Preparation and Structure of 2-Methyl-5-tetrafluorophosphoranylpyrrole

By Michael J. C. Hewson, Reinhard Schmutzler, and William S. Sheldrick*
(Lehrstuhl B für Anorganische Chemie, Technische Universität, 33, Braunschweig, Pockelsstrasse 4, West Germany)

Summary The preparation of 2 -methyl-5-tetrafluorophosphoranyl pyrrole has been carried out, and the compound investigated structurally by means of n.m.r. and i.r. spectroscopy and X-ray diffraction.

Although the structures of molecules containing penta-co-ordinated phosphorus are a topic of considerable current interest, ${ }^{1}$ there have been few diffraction studies of such compounds. We report the first X-ray diffraction study of an acyclic fluorophosphorane.

Compound (I) was allowed to react with phosphorus pentafluoride, with the formation of trimethylfluorosilane and 2-methyl-5-tetrafluorophosphoranylpyrrole (II), ${ }^{2}$ a white crystalline solid of m.p. $44-45{ }^{\circ} \mathrm{C}$ and b.p. $76{ }^{\circ} \mathrm{C}$ at 25 mm in 62% yield. I.r. data indicated the presence of a $\mathrm{P}-\mathrm{C}$ bond instead of the expected $\mathrm{P}-\mathrm{N}$ bond, the strong absorption at $3450 \mathrm{~cm}^{-1}$ being attributed to an $\mathrm{N}-\mathrm{H}$ stretch. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum of (II) (toluene solution) at room temperature consists of a doublet centred at δ $+60 \cdot 7$, relative to internal $\mathrm{CCl}_{3} \mathrm{~F}, J(\mathrm{PF}) 892 \mathrm{~Hz}$. However, the low temperature ${ }^{19} \mathrm{~F}$ n.m.r. spectrum ($-50^{\circ} \mathrm{C}$) shows
the presence of three distinct fluorine atom environments, the resonances being centered at $\delta+50 \cdot 4\left(\mathrm{~F}^{1}\right),+46 \cdot 6\left(\mathrm{~F}^{2}\right)$, and $+73 \cdot 2$ (F^{3} and F^{4}). The following coupling constants are observed: $J\left(\mathrm{PF}^{1}\right) 856, J\left(\mathrm{PF}^{2}\right) 838, J\left(\mathrm{PF}^{3}\right) 967, J\left(\mathrm{PF}^{4}\right)$ 967, $J\left(\mathrm{~F}^{1} \mathrm{~F}^{2}\right) 17, J\left(\mathrm{~F}^{1} \mathrm{~F}^{3}\right) 76$, and $J\left(\mathrm{~F}^{2} \mathrm{~F}^{3}\right) 66 \mathrm{~Hz}$. All the

n.m.r. results obtained were consistent with a trigonalbipyramidal structure in which the pyrrole ring occupies an equatorial position. ${ }^{3}$ It may, therefore, be concluded that the pyrrole ring takes up a position in the axial plane of the trigonal bipyramid, thus accounting for the magnetic nonequivalence of the axial fluorine atoms, F^{1} and F^{2}.
Crystals of (II) are orthorhombic Pbca; $a=16.352(3)$, $b=11.875(4), c=7.781(2) \AA, Z=8$. Intensity measure-
ments were estimated visually from equi-inclination Weissenberg photographs taken with Ni-filtered $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation. The structure was solved directly by a leastsquares application of Sayre's equation and refined by full-matrix least-squares. With the introduction of anisotropic temperature factors for all refined atoms the R factor converged to 0.096 for 576 unique reflections. The hydrogen atom positions were not successfully refined.

Figure. The molecule (II) showing bond lengths and angles. The e.s.d.s. are $\mathrm{P}-\mathrm{F} 0.008, \mathrm{P}-\mathrm{C} 0.012, \mathrm{~N}-\mathrm{C} 0.01, \mathrm{C}-\mathrm{C} 0.02 \AA$, angles at $\mathrm{P} 0.5^{\circ}$, angles at $\mathrm{C}(5) 0.9^{\circ}$.

The crystal structure (see Figure) confirms the n.m.r. interpretation. Co-ordination round the phosphorus is trigonal-bipyramidal and the maximum deviation from a weighted least-squares plane through the $P, F(1)$, and $F(2)$
atoms and pyrrole ring is $0.036 \AA$ at $\mathrm{C}(4)$. The mean $\mathrm{P}-\mathrm{F}$ (axial) and $\mathrm{P}-\mathrm{F}$ (equatorial) bond lengths are similar to those observed in $\mathrm{MePF}_{4} .{ }^{4}$ The $\mathrm{P}-\mathrm{C}$ bond length is shorter than that previously observed in acyclic compounds containing penta-co-ordinate phosphorus. ${ }^{1}$ In particular, a comparison with the values of 1.780 and $1.798 \AA$ observed in MePF_{4} and $\mathrm{Me}_{2} \mathrm{PF}_{3}$ respectively, ${ }^{4}$ suggests the existence of some degree of interaction between the π-orbital system of the pyrrole ring and the framework σ - or $3 d$-orbitals of phosphorus. This is confirmed by the observed narrowing of the equatorial $\mathrm{F}-\mathrm{P}-\mathrm{F}$ angle to 108.1° A similar, though not so pronounced, narrowing has been observed on the replacement of fluorine by a less electronegative substituent in MePF_{4} and $\mathrm{HPF}_{4}{ }^{5}$ It may therefore be inferred, in accordance with the simple electron pair repulsion model of Gillespie, that the electron density in the P-C bond is greater at phosphorus in (II) than in the tetrafluorophosphoranes mentioned above. The position of the pyrrole donor π-orbitals in the equatorial plane is in agreement with a recent prediction concerning equatorial substituents in a trigonal-bipyramidal system. ${ }^{6}$ The molecules are linked by hydrogen bonds into linear chains, as demonstrated by the $\mathrm{F}(2) \cdots \mathrm{H}-\mathrm{N}$ distance of $3.01 \AA$, and the relatively high melting point of (II).

Support from the Alexander von Humboldt-Stiftung (W.S.S.) and Deutsch Forschungsgemeinschaft (M.J.C.H.) is acknowledged.
(Received, 13th December 1972; Com. 2082.)

[^0]
[^0]: ${ }^{1}$ R. R. Holmes, Accounts Chem. Res., 1972, 5, 296.
 ${ }_{3}^{2}$ M. J. C. Hewson and R. Schmutzler, unpublished results.
 ${ }^{3}$ R. Schmutzler in "Halogen Chemistry," Vol. 2, ed., V. Gutmann, Academic Press, 1967, p. 31.
 ${ }^{4}$ L. S. Bartell and K. W. Hansen, Inorg. Chem., 1965, 4, 1777.
 ${ }^{5}$ S. B. Pierce and C. D. Cornwell, J. Chem. Phys., 1968, 48, 2118.
 ${ }^{6}$ R. Hoffmann, J. M. Howell, and E. L. Muetterties, J. Amer. Chem. Soc., 1972, 3047.

