Crystal and Molecular Structure of Tetrafluoroethylene-1,1,1-tris-(diphenylphosphinomethyl)ethane nickel

By JANE BROWNING and BRUCE R. PENFOLD*

(Department of Chemistry, University of Canterbury, Christchurch, New Zealand)

Summary Crystal structure analysis of tetrafluoroethylene-1,1,1-tris(diphenylphosphinomethyl)ethanenickel has established that the phosphine ligand is tridentate through three phosphorus atoms; the co-ordinated C_2F_4 group is highly distorted, each CF₂ being bent away from the planar conformation by an average of 42°.

IN the course of studies of nickel d^{10} tetrafluoroethylene complexes¹ it was found that tetrafluoroethylene-1,1,1-tris(diphenylphosphinomethyl)ethanenickel was unreactive towards excess of tetrafluoroethylene (TFE). Thus the

presumed three-membered ring system Ni CF2 CF2 is not con-

verted into a five-membered ring system $Ni \cdot CF_2 \cdot CF_2 \cdot CF_2 \cdot CF_2 \cdot CF_2$ as has been found in other reactions.² For a fuller understanding of the chemistry of this system and, in particular to establish whether this resistance to the formation of a five-membered ring could be related to the absence of a vacant co-ordination site it was necessary to determine by crystal structure analysis the manner of co-ordination of the phosphine which could function either as a bidentate or a tridentate ligand. Further, although the distinctive chemistry of metal complexes containing polytertiary phosphine ligands has been much studied³ there is a paucity of quantitative molecular structural data.

Crystal data: $C_{43}H_{39}F_4NiP_3$, M = 783, monoclinic, spacegroup $P2_1/c$; a = 10.567(3), b = 20.510(3), c = 18.963(3) Å, $\beta = 114.20(2)^\circ$, $(\lambda = 0.7107$ Å for Mo- K_{α} ; U = 3749 Å³; Z = 4, $D_c = 1.39$ g cm⁻³; $\mu = 6.99$ cm⁻¹ for Mo- K_{α} .

The structure was solved by conventional heavy-atom methods but with the phenyl rings treated as rigid groups. It was refined to R = 0.084 using 1272 independent reflections $(2\theta \leq 40^{\circ} \text{ and with } |F|^2 \geq 3\sigma |F|^2)$ measured on a four-circle diffractometer and with Mo- K_{α} radiation.

The molecular structure is illustrated in the Figure which shows that all three phosphorus atoms are co-ordinated to nickel. There is therefore no vacant co-ordination site to facilitate addition of TFE. Bond distances are Ni-P(1) $2\cdot28(1)$, Ni-P(2) $2\cdot26(1)$, and Ni-P(3) $2\cdot21(1)$ Å. The mean values of the angles P-Ni-P and P-Ni-(mid-point C-C) are $92\cdot5$ and $122\cdot7^{\circ}$. The C₂F₄ molecule is symmetrically co-ordinated to nickel with Ni-C(6) $1\cdot88(2)$ Å, Ni-C(7) $1\cdot84(2)$ Å, and \angle C(6)-Ni-C(7) $43(1)^{\circ}$. The C-C bond length of $1\cdot37(3)$ Å is consistent with those observed in other TFE complexes but the departure from planarity of

FIGURE. A general view of the molecule.

the C_2F_4 molecule is greater than hitherto observed.⁴ Thus the angle α between the normals to the two CF₂ planes is 84° which means that each CF₂ plane has been bent away from the planar molecular conformation by an average of 42°.

If the TFE is regarded as a monodentate π -donor the co-ordination geometry is distorted tetrahedral and closely similar to that observed in the cation [Ni {MeC(CH₂PEt₂)₃}-

(NO)]^{+ 5} and the compound {MeC(CH₂PPh₂)₃}NiI,⁶ the only other two authenticated examples of a triphosphine coordinating as a tridentate ligand through its phosphorus atoms.

We thank Professor F. G. A. Stone for suggesting this study and Dr. P. K. Maples for crystal samples.

(Received, 18th December 1972; Com. 2111.)

¹ P. K. Maples, M. Green, and F. G. A. Stone, *J.C.S. Dalton*, 1973, in the press.
² C. S. Cundy, M. Green, and F. G. A. Stone, *J. Chem. Soc.* (A), 1970, 1647; J. Browning, M. Green, and F. G. A. Stone, *J. Chem. Soc.* (A), 1971, 453; M. Green, S. K. Shakshooki, and F. G. A. Stone, *J. Chem. Soc.* (A), 1971, 2828.
⁸ R. B. King, Accounts Chem. Res., 1972, 5, 177.
⁴ L. Gurgenbarrer and R. Green, Chem. Soc. (1072, 04, 2770.

 ⁴ L. J. Guggenberger and R. Cramer, J. Amer. Chem. Soc., 1972, 94, 3779.
⁵ P. G. Eller and P. W. R. Corfield, Abstracts American Crystallographic Association Summer Meeting, Ottawa, Canada, Aug. 1970, p. 85. • P. Dapporto, G. Fallani, S. Midollini, and L. Sacconi, J.C.S. Chem. Comm., 1972, 1161.