

Synthesis and Absolute Configuration of the Terpenes (-)-Campherenone, (+)-Epicampherenone, (-)- β -Santalene, and (+)-Epi- β -santalene

By GORDON L. HODGSON, DAVID F. MACSWEENEY, ROY W. MILLS, and THOMAS MONEY* (Department of Chemistry, University of British Columbia, Vancouver 8, British Columbia, Canada)

Summary Biosynthetic considerations prompted synthetic studies which have resulted in reassignment of absolute configuration to (-)-campherenone and have established the absolute configuration of (+)-epicampherenone, (-)- β -santalene, and (+)-epi- β -santalene.

WE have put forward an alternative biosynthetic route to certain structurally-related mono- and sesqui-terpenes¹ and have suggested that a biosynthetic relationship should exist between appropriate enantiomers of campherenone (1), campherenol (2), β -santalene (3), and α -santalene (4). The co-occurrence² of (-)-campherenone, (-)-campherenol, β -santalene, and (+)- α -santalene in Cinnamomum camphora-Siebold (Lauraceae) supports this suggestion. However, an apparent anomaly exists in this group of sesquiterpenes since (-)-campherenone (5) and (-)-campherenol (6) have been assigned absolute configurations which preclude a biosynthetic relationship with $(+)-\alpha$ -santalene (4). In addition, $(+)-\alpha$ -santalene, $(-)-\beta$ -santalene, and (+)-epi- β -santalene (7) also co-occur in Santalum album and it is reasonable to presume that these compounds are biosynthetically related to each other. Since the absolute configuration of (+)- α -santalene (4) is known³ we decided to obtain independent evidence for the absolute configuration of (-)-campherenone, (-)- β -santalene, and (+)-epi- β -santalene.

Our previous synthetic studies⁴ provided racemic forms of the title compounds and therefore alternative synthetic routes from (+)-camphor were developed. The ethylene acetal of (+)-9-bromocamphor $(8)^5$ was converted into (-)-9-iodocamphor ethylene acetal (9) by heating with NaI in Me,SO under reflux. Subsequent treatment of (9) with the π -allylnickel complex⁶ (10) derived from 1-bromo-3methylbut-2-ene, followed by hydrolysis, provided (+)epicampherenone (11), $\dagger [\alpha]_{D} + 84.4^{\circ}$ (c 4.88, CHCl₃) in 45% yield. Reduction of (11) with LiAlH(OMe)₃ gave (+)isoepicampherenol (12), $\dagger [\alpha]_D^{30} + 7.0^\circ$ (c 5.10, CHCl₃) which, on heating with toluene-p-sulphonyl chloride in pyridine,^{4a} was converted in 80% yield into (+)-epi- β -santalene (7), $\dagger [\alpha]_{D}^{29} + 26.9^{\circ}$ (c 2.6, CHCl₃). [A sample of natural epi- β -santalene isolated from sandalwood oil had $[\alpha]_{D}^{22}$ $+23\cdot3^{\circ}$ (c 4.12, CHCl₃)].

Treatment of the ethylene acetal (14) of (-)-8-iodocamphor $(13)^7$ with the π -allylnickel complex (10), followed by hydrolysis, gave (-)-campherenone (1) $\dagger \{ [\alpha]^{30} - 36^{\circ} (c \alpha) \}$ +1195} in ca. 80% yield. The c.d. data quoted above differ from those previously reported² for the natural compound {[α]_D -33° (c 10.00, CHCl₃); [θ]^{MeOH}₂₉₈ +600} and, at present, we have no explanation for this discrepancy. Reduction of (1) with $LiAlH(OMe)_3$ afforded (+)-isocampherenol (16), $\dagger \ [\alpha]_{D}^{32} + 25^{\circ} \ (c \ 2 \cdot 6, \ \text{CHCl}_{3}), \ \text{lit.}^{2} \ [\alpha]_{D} + 15 \cdot 3^{\circ}$ (c 2.6, $CHCl_3$), which, on heating with toluene-*p*-sulphonyl chloride in pyridine,⁴ was converted (in 70% yield) into (3), $\dagger [\alpha]_{D}^{23} - 112^{\circ}$ (c 5.01, CHCl₃). The specific rotation of a sample of natural β -santalene isolated from sandalwood oil was $[\alpha]_{\rm D}^{28} - 102^{\circ}$ (c 5.01, CHCl₃).

These absolute configurational assignments support the postulated biosynthetic relationship between (-)-campherenone, (-)-campherenol, (-)- β -santalene, \ddagger and (+)- α santalene in Cinnamomum camphora and between $(+)-\alpha$ santalene, (-)- β -santalene, and (+)-epi- β -santalene in Santalum album. The biosynthesis of α - and β -santalene could involve dehydration of a precursor such as isocampherenol while epi- β -santalene (and presumably β -santalene) could arise from cleavage of the cyclopropane ring in α -santalene.

We thank the National Research Council of Canada for financial support.

(Received, 15th January 1973; Com. 052.)

† Spectral (n.m.r., i.r.) and g.l.c. characteristics identical to those previously recorded for the racemic compound, cf. ref. 4a.

 \ddagger We have assumed that the β -santalene which occurs in *Cinnamomum camphora* is laevorotatory.

¹ An account of these suggestions was given at the CIC-ACS Conference, Toronto 1970; see also T. Money, Progr. Org. Chem., 1973, 8, 29; J.C.S. Perkin I, in the press.

² H. Hikino, N. Suzuki, and T. Takemoto, Chem. and Pharm. Bull. (Japan), 1971, 19, 87, and references therein.

³ E. J. Corey, S. W. Chow, and R. A. Scherrer, J. Amer. Chem. Soc., 1957, 79, 5773; G. Ourisson, Chem. and Ind., 1953, 918.

⁴ G. L. Hodgson, D. F. MacSweeney, and T. Money, (a) Chem. Comm., 1971, 766; (b) Tetrahedron Letters, 1972, 3683.

⁵ Derived from commercially available (+)-3-bromocamphor: cf. E. J. Corey, S. W. Chow, and R. A. Scherrer, J. Amer. Chem. Soc., 1957, 79, 5773.

⁶ E. J. Corey and M. F. Semmelhack, J. Amer. Chem. Soc., 1967, 89, 2755; cf. K. Sato, S. Inoue, S. Ota, and Y. Fujita, J. Org. Chem., 1972, 37, 462.

⁷ Derived from (+)-9-bromocamphor by a combination of known reaction sequences (E. J. Corey, M. Ohno, S. W. Chow, and R. A. Scherrer, J. Amer. Chem. Soc., 1959, 81, 6305; O. R. Rodig and R. J. Sysko, J. Org. Chem., 1971, 36, 2324; A. M. T. Finch and W. R. Vaughan, J. Amer. Chem. Soc., 1969, 91, 1416.) The configurational homogeneity of (13) was confirmed by hydrogenolysis (Pd-C-H₂; 40 lb in⁻²) to (-)-camphor (15), $[\alpha]_{32}^{39} - 44.8^{\circ}$ (c 1.82, EtOH) [lit.⁸ $[\alpha]_{16}^{16} - 43.6^{\circ}$ (EtOH)]. ⁸ 'Handbook of Chemistry and Physics,' 49th edn., ed. R. C. Weast, The Chemical Rubber Co., Cleveland, Ohio, 1968–1969.