Multiple Rearrangements of Penicillin Sulphoxides

By D. O. Spry

(The Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46206)

Summary Multiple rearrangements of phthalimidopenicillin 1-oxide with acetic anhydride result in 2-C-bisacetoxymethyl- and 2-C-triacetoxy-penicillin derivatives.

MORIN *et al.*¹ have reported the reaction of phenoxymethylpenicillin β -sulphoxide methyl ester with Ac₂O to give the 2-*C*- β -acetoxymethylpenicillin derivative. We^{2,3} later reported the rearrangement of phthalimidopenicillin α -sulphoxide with Ac₂O to give a mixture of 2-*C*- α - and - β acetoxymethylpenicillins, isolated as the α -sulphoxides [(1) \rightarrow (2) + (3)].

We now report the functionalization of both 2-C-methyl groups via multiple sulphoxide rearrangements with Ac₂O to give a new class of penicillins. Thus the Ac₂O rearrangement of (2) followed by silica gel chromatography gave $(4)^{\dagger}$ in low yield (19%). The ring-expanded structure (5) was ruled out by its independent synthesis (95% yield) via the acetylation of $(6)^2$ with isopropenyl acetate,⁴ followed by direct comparison. Subsequent oxidation of (4) with 1 equiv. of m-chloroperbenzoic acid (m-CPBA) gave the sulphoxide (7)[†] (84%). Treatment of (7) with Ac₂O followed by silica gel chromatography gave what we believe to be the triacetoxypenicillin (8); (21%) as a mixture of isomers at 2-C in ca. 2:1 (isomer A:B) ratio: v_{max} (CHCl₃) 1780 cm⁻¹ (β -lactam), δ (CDCl₃) 2.05, 2.08, 2.19 (9-H, s each, OAc), 3.80 (s, CO₂Me, isomer A), 3.82 (s, CO₂Me, isomer B), 4.44, 4.66 (AB, J 12 Hz, CH₂OAc, isomer A), 4.68, 4.99 (AB, J 12 Hz, CH₂OAc, isomer B), 5.11 (3-H, isomer B), 5.20 (3-H, isomer A), 5.36, 5.76 (2d, J 4 Hz, 5-H, 6-H, isomer B), 5.65, 5.73 (2d, J 4 Hz, 5-H, 6-H, isomer A), 7.24 [s, CH(OAc)₂], and 7.86 (m, Ar).

Although similar multiple sulphoxide rearrangements on 2,2-dimethylthiochroman 1-oxide (9) provided (10), which could be hydrolysed to the formyl derivative, acid hydrolysis of (8) was not investigated due to the poor overall yield of (8) from phthalimidopenicillin (< 1%).

(Received, 22nd January 1973; Com. 087.)

† Structure assignment supported by i.r. and n.m.r. spectral data. For compound (4): ν_{max} (CHCl₃) 1778 cm⁻¹ (β-lactam); δ(CDCl₃) 2.03 and 2.13 (each 3H, s, OAc), 3.73 (3H, s, CO₂Me), 4.19 and 4.44, and 4.53 and 473 (each 2H, AB, J 12 Hz, CH₂OAc), 5.07 (1H, s, 3-H), 5.64 and 5.73 (each 1H, d, J 4 Hz), and 7.86 (4H, m).

‡ Attempts to oxidize (5) followed by a Pummerer rearrangement have not been successful.

¹ R. B. Morin, B. G. Jackson, R. A. Mueller, E. R. Lavagnino, W. B. Scanlon, and S. L. Andrews, J. Amer. Chem. Soc., 1969, 91, 1401.

² D. O. Spry, J. Amer. Chem. Soc., 1970, 92, 5006.

³ R. D. G. Cooper, L. D. Hatfield, and D. O. Spry, Accounts Chem. Res., 1973, 6, 32.

⁴ G. E. Gutowske, B. J. Foster, C. J. Daniels, L. D. Hatfield, and J. W. Fisher, Tetrahedron Letters, 1971, 3433.