Nonbonded Attraction in Organic Molecules and Substituent Effects on Nonbonded Attraction

By NICOLAOS D. EPIOTIS* and WILLIAM CHERRY

(Department of Chemistry, University of Washington, Seattle, Washington 98105)

with adjacent bonds, and this results in net lone pair attraction which is subject to substituent effects; experimental results are in agreement with these general qualitative conclusions.

THE interaction of nonbonded electrons¹ is responsible for certain mysterious effects in organic chemistry such as the small geminal angles in 1,1-disubstituted ethylenes² and the greater stability of the *cis* rather than the *trans* isomer of various olefins.³ We report a simple molecular orbital interpretation of these effects.

In 1,1-dihalogenoethylenes, the halogen lone pairs are contained in the p_z and p_z orbitals.[†] The p_z lone pairs interact because of their proximity4 to one another, and give rise to a bonding, n_z , and an antibonding n_z^* , orbital. The bond order between the two halogen p_z orbitals is zero and the two lone pairs can be said to neither attract or repel each other. The n_z and n_z^{\bullet} orbitals can then interact with the π_z orbitals of the olefinic bond and there is an unoccupied π_z^* orbital which can interact with n_z . A consequence of this interaction is charge transfer⁵ from n_z to π_z^* and this now renders the bond order between the two halogen p_z orbitals negative and the lone pairs can be said to repel each other (see Figure). Similarly the p_x lone pairs will interact with each other and give rise to a bonding, n_x , and an antibonding, n_x^{\bullet} , orbital. By following the same reasoning as before we find that there is an empty σ_x^{\bullet} orbital which can interact with the n_x orbital resulting in charge transfer and an empty π_y orbital which can interact with the n_x^* orbital also resulting in charge transfer. The latter interaction will be stronger than the former since the energy separation of the interacting levels is smaller in the latter than in the former case. The net result of the two HCH angle in ethylene.⁷ We can follow the same reasoning

Summary Lone pairs can interact with each other and also interactions is that the bond order between the two halogen p_x orbitals becomes positive and the lone pair interaction attractive.[‡]

TABLE.	The effect of substituents on the stability of the geometrical				
	isomers of FXC=CXF molecules ^a				

Substituent X			$E_{\rm cis} - E_{\rm trans^b}$ (cal/mole)	Fp_z -F p_z Bond order
NH.			1550	0.0376
OH			-283	0.0400
н			- 611	0.0475
CN			-1392	0.0476

^a Results of SCF-MO-INDO calculations. In all cases standard bond lengths and bond angles were used. b A plus sign indicates that the trans isomer is more stable and vice versa.

We have carried out INDO calculations⁶ on 1,1-diffuoroethylene in order to determine the relative importance of the $p_x - p_x$ attractive and $p_z - p_z$ repulsive lone pair interactions. It was found that the $p_x - p_x$ bond order is much more positive than the $p_z - p_z$ bond order is negative.§ Hence, the net effect of lone pair interaction in 1,1-dihalogenoethylenes is attraction. Direct evidence for the attractive interaction of halogens in halogenoethylenes has

been provided by spectroscopic studies. Specifically, it has been found that the XCX bond angle in dihalogenoethylenes is significantly less than 120° and, in any case, less than the

† In halogenoethylenes, the second lone pair is localized mainly in a p_x orbital as long as the geminal olefinic angle is greater than 90°, a condition which is met in all normal olefins. In such a case the ns and np, atomic orbitals of the halogen mix strongly and contribute mostly towards sigma bond formation with the olefin, while the lone pair becomes mainly localized in the np_x atomic orbital of the halogen.

‡ It should be noted that if overlap is included, the interaction between the two halogen p_z or p_x orbitals will be repulsive and the lone pairs can be said to repel each other conforming to the classical picture. However, interaction of the lone pairs with the olefinic orbitals will tend to make this repulsive interaction extraction of the quality interaction of the lone pairs with the olefinic orbitals will tend to make this repulsive interaction either more repulsive or attractive, e.g. the qualitative conclusions remain unaltered whether or not overlap is included in the analysis.

§ The $p_z - p_z$ bond order was -0.0533 and the $p_x - p_x$ bond order was 0.0873 and the overlap integral in both cases is the same.

to analyse the lone pair interactions in 1,2-cis-dihalogenoethylenes. Consider the lone pairs occupying the p_z halogen orbitals. These orbitals split into a bonding, n_z , and an antibonding, n_z^* , combination which can then interact with the orbitals of the olefinic bond. In this case, there is an unoccupied π^{\bullet}_{z} orbital which can interact with n_z giving rise to charge transfer from n_z to π_z . This renders the bond order between the halogen p_z orbitals

FIGURE. The interaction of the p_z lone pairs with the π_z orbitals of ethylene in 1,1-dihalogenoethylenes. Arrows indicate the interactions which give rise to net charge transfer. Orbitals are classified with respect to plane of symmetry.

positive and the lone pair interaction attractive. Similarly, it can be shown that the lone pairs localized in the p_x halogen orbitals split into n_x and n_x orbitals as a result of through space interaction and n_x^* can interact with the σ_x^* and π_y^{\bullet} orbitals of the olefinic bond giving rise to charge transfer from n_x^{\bullet} to σ_x^{\bullet} and π_y^{\bullet} rendering the bond order between the halogen p_x orbitals positive and the corresponding lone pair interaction attractive. Hence, the two halogen atoms in cis diffuoroethylene will tend to attract each other. Since there is net attraction, one expects that the cis isomer will be more stable than the trans isomer. This is so because the cis form can enjoy the additional stabilization provided by the attractive forces between the halogen centres, while the trans form cannot do so. The same conclusions are reached for 1,2-disubstituted ethylenes where the two substituents are different heteroatoms possessing at least one lone pair.

We further tested this model by studying the effect of substituents on the degree of attraction between fluorine p_z lone pairs in 1,2-disubstituted, 1,2-difluoroethylene molecules. Here, the attraction between the fluorine lone pairs depends on the magnitude of the fluorine $p_z - p_z$ bond order which, in turn, depends on the degree of charge transfer from n_{z}^{\bullet} to π_{z}^{\bullet} . The latter is inversely proportional to the energy separation between n_{z}^{*} and π_{z}^{*} and, hence, substituents attached on cis-1,2-difluoroethylene which raise the energy of π_z^* will tend to reduce the attraction between the two fluorine p_z lone pairs and substituents attached on *cis* difluoroethylene which lower the energy of π_z^* will tend to increase the attraction between the two fluorine p_z lone pairs. Electron donor groups are substituents of the former type and electron acceptor groups are substituents of the latter type.⁸ We have carried out INDO calculations to test our simple model and the results are shown in the Table.¶ As the electron donating power of the substituent increases, the $p_z - p_z$ bond order between the two fluorine atoms decreases and as this occurs the cis isomer becomes progressively less favoured energetically relative to the trans isomer. Hence, the relative stability of the two geometrical isomers is seen to be simply related to the relative attraction between the two fluorine p_z lone pairs.

These ideas have been extended to pentadiene-like molecules, hexatriene-like molecules and to problems in conformational analysis and organic reactivity and these topics will be discussed in a full paper.

We thank the Petroleum Research Fund and the Research Corporation for support, E. R. Davidson for his assistance, R. Hoffmann⁹ for a preprint of related work and comments, and L. Salem and P. von R. Schlever for helpful suggestions.

(Received, 18th December 1972; Com. 2117.)

Substituents which are small in size were chosen for this study so that we could be reasonably certain that we were looking at a purely electronic effect.

¹ S. Wolfe, Accounts Chem. Res., 1972, 5, 102.

 ² W. A. Sheppard and C. M. Sharts, 'Organic Fluorine Chemistry,' W. A. Benjamin, 1969.
 ³ H. G. Viehe, *Chem. Ber.*, 1960, 93, 1697; A. Demiel, *J. Org. Chem.*, 1962, 27, 3500; R. E. Wood and D. P. Stevenson, *J. Amer. Chem. Soc.*, 1941, 63, 1650; K. S. Pitzer and J. L. Hollenberg, *ibid.*, 1954, 76, 1493; H. G. Viehe and E. Franchimont, *Chem. Ber.*, 1963, 96, 3153; H. G. Viehe and E. Franchimont, *Chem. Ber.*, 1964, 97, 602; J. W. Crump, *J. Org. Chem.*, 1963, 28, 953; K. E. Harwell and L. F. Hatch, *J. Amer. Chem. Soc.*, 1955, 77, 1682; C. C. Price and W. H. Snyder, *ibid.*, 1961, 83, 1773; P. Salomaa and P. Nissi, Anter Chem. Soc., 1960, 201, 2020. Acta Chem. Scand., 1967, 21, 1386. In some of these examples, it is assumed that the methyl group can be equated to a doubly occupied p_z atomic orbital according to the heteroatom model: F. A. Matsen, J. Amer. Chem. Soc., 1950, 72, 5243.

 ⁴ R. Hoffmann, Accounts Chem. Res., 1971, 4, 1, and references therein.
 ⁵ M. J. S. Dewar, 'Hyperconjugation,' Ronald Press, 1962; R. Hoffmann, Tetrahedron Letters, 1970, 2907; H. Günther, ibid., 1970, 5173.

⁶ J. A. Pople and D. L. Beveridge, 'Approximate Molecular Orbital Theory,' McGraw-Hill, Inc., 1970.
⁷ R. L. Livingston, C. N. R. Rao, L. M. Kaplan, and L. Rocks, J. Amer. Chem. Soc., 1958, 80, 5368; W. F. Edgell, P. A. Kinsey, and J. W. Amy, J. Amer. Chem. Soc., 1957, 79, 2691; J. M. Dowling and B. P. Stoicheff, Canad. J. Phys., 1959, 37, 703.
⁸ For discussions of the effect of substituents on the electronic structure of olefins, see: H. H. Jaffe and M. Orchin, 'The Theory and Application of Ultraviolet Spectroscopy,' Wiley, 1962; K. Higasi, H. Baba, and A. Rembaum, 'Quantum Organic Chemistry,' Interscience, 1965; C. A. Coulson and E. T. Stewart in 'The Chemistry of Alkenes,' ed. S. Patai, Interscience, 1964.
⁹ R. Hoffmann, C. C. Levin, and R. A. Moss, J. Amer. Chem. Soc., 1973, 95, 629; see also: R. Hoffmann and R. A. Olofson, *ibid.*, 1066, 69, 042.

1966, 88, 943.