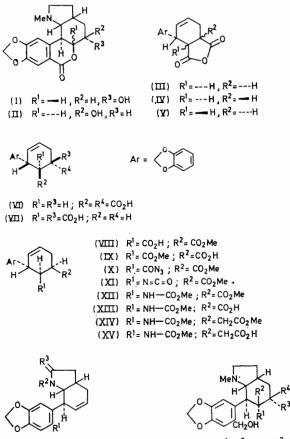
Total Synthesis of the Alkaloids Clivonine and Clividine

By HIROSHI IRIE,* YASUO NAGAI, KATSUMI TAMOTO, and HIROKAZU TANAKA (Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan)

Summary (\pm) -Clivonine and (\pm) -clividine, lactonic alkaloids in Amaryllidaceae plants, have been synthesised.

In connection with our synthetic work¹ on Amaryllidaceae alkaloids, we report here the synthesis of the lactonic alkaloids clivonine $(I)^2$ and clividine $(II)^3$ which occur in *Clivia miniata* Regel (Amaryllidaceae).


Cycloaddition of fumaric acid and 3,4-methylenedioxyphenyl allyl carbinol⁴ in boiling acetic anhydride for 4 h gave a small amount of the anhydride (III)[†] and two stereoisomeric anhydrides (IV) (ν_{max} 1860 and 1790 cm⁻¹) and (V) (ν_{max} 1855 and 1785 cm⁻¹). Hydrolysis of (IV) and (V) with aqueous sodium hydroxide gave the corresponding acids (VI) and (VII). Re-cyclisation of the acids with acetic anhydride under reflux for 12 h furnished stereospecifically the same *trans-cis*-anhydride (III)[†] (ν_{max} 1850 and 1775 cm⁻¹). Confirmation of the structures of all the anhydrides was provided from the synthesis of α -, β -, and δ -lycorane⁵ from the anhydrides, (III)—(V), respectively.§

Treatment of (III) with anhydrous methanol (1 equiv.) in benzene gave the regio-isomeric half esters (VIII) [δ (CDCl₃) 3.51 (OMe) and 11.15 (CO₂H)] and (IX) [δ 3.51, (OMe) and 8.78, (CO₂H)] in a ratio of 7:3. Treatment of the former with thionyl chloride followed by sodium azide gave the azide (X) [ν_{max} (CHCl₃) 2140 cm⁻¹] which was heated in benzene to give the isocyanate (XI) [ν_{max} (CHCl₃) 2260 cm⁻¹]. The isocyanate was converted into the urethane (XII) [δ 3.64 and 3.60, (2 -OMe), ν_{max} 3350, 1733, and 1690 cm⁻¹] with methanol which was hydrolysed to the acid (XIII) by treatment with hydrochloric acid in acetic acid.

[†] Satisfactory elemental analyses and mass spectra were obtained for all the compounds cited here and i.r. spectra were determined for KBr disc unless otherwise indicated.

[‡] The same type of epimerisation has been reported by R. D. Haworth and F. H. Slinger, J. Chem. Soc., 1940, 1321.

[§] The synthesis of lycoranes will be reported in the full paper.

 $R^1 = R^3 = OH$; $R^2 = R^4 = H$ (XIX) R¹=H; R²=CO₂Me; R³=O (XVI) $R^{1} = R^{3} = H; R^{2} = R^{4} = OH$ (XX) (XVII) $R^1 = CH_2OAc; R^2 = CO_2Me; R^3 = O$ (XVIII) $R^1 = CH_2OH$; $R^2 = Me$; $R^3 = H_2$

Treatment of (XVI) with chloromethyl methyl ether in acetic acid in the presence of zinc chloride followed by silver acetate in acetic anhydride and acetic acid furnished the acetate (XVII) [δ 2.05, (CO-Me), 3.45 (OMe), and 5.02 (s, benzylic CH2)] (58%). Reduction of (XVII) with lithium aluminium hydride in ether gave the amino-alcohol (XVIII) [δ 1.83 (N–Me)] (65%), which was characterised as its picrate, m.p. 188-189°. Oxidation of (XVIII) with osmium tetroxide in ether gave the stereoisomeric triols (XIX), m.p. 180-183° and (XX), m.p. 230-232° (20.2 and 22.2% respectively), after separation on an alumina column. The faster running triol (XIX) was treated with manganese dioxide in chloroform to give (\pm) -clivonine (I), m.p. 223-225° which was identical with clivonine¶ in the n.m.r. (CDCl₃), i.r. (CHCl₃), and mass spectra. The slower running triol (XX) was also oxidised with the same reagent in chloroform and tetrahydrofuran to give (\pm) -clividine (II), m.p. 170–172° (although without direct comparison with the natural source).

Since clivonine has been converted into dihydrohippeastrine, our synthesis means the total synthesis of dihydrohippeastrine in a formal sense.

(Received, 20th February 1973; Com. 237.)

¶ Kindly supplied by Professor W. C. Wildman (Chemistry Department, Iowa State University, U.S.A.).

¹ H. Irie, Y. Nishitani, M. Sugita, and S. Uyeo, J.C.S. Chem. Comm., 1970, 1313. ² P. W. Jeffs, J. F. Hansen, W. Döpke, and M. Bienert, Tetrahedron, 1971, 27, 5065; W. C. Wildman, 'The Alkaloids,' ed. R. H. F. Manske, Academic Press, New York, 1968, vol. 11, p. 307.

³ W. Döpke and M. Bienert, Tetrahedron Letters, 1970, 3245.

⁴ R. T. Arnold and E. C. Coyner, J. Amer. Chem. Soc., 1944, 66, 1542; R. Quelet, R. Dran, and G. Lukacs, Compt. rend., 1964, 258 1826; R. Dran and T. Prange, *ibid.*, 1966, 262 C, 492.

⁵ K. Kotera, Tetrahedron, 1961, 12, 240, 248; K. Takeda, K. Kotera, S. Mizukami, and M. Kobayashi, Chem. Pharm. Bull (Tokyo), 1960, **8**, 483.