Evidence Consistent with an Elimination Mechanism in the Hydrolysis of Aryl N-Methylamino-sulphonates

By KENNETH T. DOUGLAS and ANDREW WILLIAMS* (University Chemical Laboratories, Canterbury, Kent)

Summary pH-independent rate constants for hydrolysis of the title esters obey a Brønsted relationship with $\beta - 1.85$; participation of an elimination mechanism involving $MeN = SO_2$ intermediate is consistent with the above data (indicating considerable SO bond cleavage in the transition state) with the absence of a glycine buffer effect, and with a 10⁸ fold greater reactivity of the 4-nitrophenyl ester compared with the dimethylamino-ester to reaction with hydroxide ion.

WE report here the first clear-cut evidence for the participation of an elimination mechanism in the hydrolysis of aryl N-alkylaminosulphonates. The pH-dependence of the pseudo-first-order rate constants for hydrolysis of 4-nitrophenyl N-methylaminosulphonate fits equation (2). The

$$k = k(H_2O) + \frac{k'}{\{1 + K_w/([OH]K_a)\}}$$
(2)

rate constant k' varies with leaving group according to a Hammett equation; the σ^- parameters ($\rho 4.04, r 0.9998$) indicate significant S-O cleavage in the transition state of the rate-determining step. Oxygen-18 studies indicate exclusive S-O cleavage rather than aryl-O cleavage. A plot of $\log_{10}k'$ vs. pK_a of the leaving phenol has a slope of -1.8implying that the rate-determining step has considerable phenolate ion character in its transition state.

The Brønsted relationship for alkaline hydrolysis of phenyl sulphonates has a small slope and the Hammett relationship correlates¹ with σ rather than with σ^{-} ; these esters hydrolyse via an $S_N 2$ process. The rate constant k' could derive from an $S_{\rm N}2$ attack of hydroxide ion on neutral substrate [k(OH)] which is inhibited as the substrate ionises. Thus k' could be composite $[K_w k(OH)/K_a]$. The ho values for K_{a} and k' are known (+2.54 and +4.04respectively) and yield a calculated ρ value of 6.58 for k(OH) which is larger by about 4 units than the expected value $(2.75)^{1}$

Nitrogen nucleophiles are known to attack sulphonyl derivatives² but glycine buffers do not accelerate the rate of

- ¹ R. V. Vizgert, Uspekhi Khim., 1963, 32, 1.
- J. L. Kice, G. J. Kasperek, and D. Patterson, J. Amer. Chem. Soc., 1969, 91, 5516.
 A. Williams, J.C.S. Perkin II, 1972, 808.
- ⁴ M. L. Bender and R. B. Homer, J. Org. Chem., 1965, 30, 3975.
- ⁵ O. Rogne, J. Chem. Soc. (B), 1969, 663.
- ⁶ G. M. Atkins and E. M. Burgess, J. Amer. Chem. Soc., 1967, 89, 2502; 1968, 90, 4744; 1972, 94, 6135.

release of 4-nitrophenol from the corresponding ester in accord with an elimination mechanism.^{3,4}

The ratio of the 'second-order' rate constant for hydroxide attack on the neutral 4-nitrophenyl ester $(k' K_a/K_w)$ to water attack $[k(H_2O)]$ is 2500. It is reasonable that the water term reflects a simple $S_N 2$ mechanism; if the hydroxide term arises from a similar mechanism, this ratio should be reflected in those sulphonyl cases where both water and hydroxide terms are from an $S_N 2$ process; this ratio is only 14 for the NN-dimethylaminosulphonyl chloride case.⁵

It is unlikely that attack of water on the conjugate base $(S_{\rm N}2)$ could be the mechanism for k' as this is > 1000 times the rate constant for attack of water on the *neutral* species $[k(H_2O)].$

The second-order rate constant for reaction of hydroxide ion with 4-nitrophenyl NN-dimethylaminosulphonate (2.36) $\times 10^{-6} M^{-1} s^{-1}$) is some 10⁸ fold smaller than the term $k' K_{\rm B} / K_{\rm W}$ for the monosubstituted ester providing excellent confirmation of the elimination mechanism.

Although we have not isolated the intermediate, recent reports⁶ describe the isolation of species identified as RNSO₂ which are exceedingly reactive to nitrogen nucleophiles and are probably too reactive to be observed even transiently in aqueous solution.

(Received, 8th February 1973; Com. 170.)