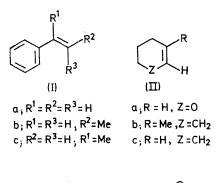
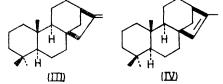
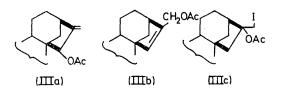

Thallium(I) Carboxylates: a New Class of Reagents for the Formation of α-Iodocarboxylates

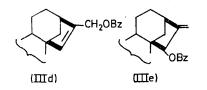
By RICHARD C. CAMBIE,* RODNEY C. HAYWARD, JOHN L. ROBERTS, and PETER S. RUTLEDGE (Department of Chemistry, University of Auckland, Auckland, New Zealand)

Summary Treatment of an alkene with a thallium(I) carboxylate and iodine gives the corresponding α -iodocarboxylate in high yield, thereby affording a regiospecific and inexpensive modification for the Prevost reaction.


ALTHOUGH α -iodocarboxylates are important in organic synthesis^{1,2} few methods are available for their preparation,³ the most satisfactory being that *via* the corresponding silver carboxylate.² During a search for a less expensive metal




than silver for use in the Prevost reaction² a modification using thallium(I) carboxylates was investigated. Unlike


Ag^I carboxylates, Tl^I carboxylates are readily prepared in high yield as stable crystalline solids.

It was found that the use of a thallium(I) carboxylate and iodine provides an effective means for the high yield conversion of alkenes into the corresponding α -iodocarboxylates as indicated in reaction (1). In a typical experiment, dropwise addition of a solution of iodine in acetic acid to a solution of cyclohexene and thallium(I) acetate in acetic acid at room temperature in a stoicheiometric ratio of $1:1:1\cdot2^4$ gave a high yield of the *trans*-iodoacetate. When the reaction was carried out using a non-homogeneous system with the thallium(I) carboxylate suspended in dry benzene² or methylene dichloride and a stoicheiometric ratio of 1:1:2, the product was again the corresponding α -iodocarboxylate. However, with the latter system less reactive substrates (*e.g.* allylbenzene) led to intractable products. With unsymmetrical alkenes the addition was regiospecific,⁵ styrene or 2-methylstyrene affording the corresponding 2-iodo-1-carboxylate. In the case of 1methylcyclohexene and thallium(I) acetate the adduct was

the unstable 2-methyl- 2α -iodohex- 1β -yl acetate whose structure was established from spectral evidence and conversion into more stable derivatives.

¹ K. H. Gibson and J. E. Saxton, J.C.S. Perkin I, 1972, 2776.

² C. V. Wilson, Org. Reactions, 1957, 9, 332. ³ Y. Ogata and K. Aoki, J. Org. Chem., 1966, 31, 1625; C. P. Forbes, A. Goosen, and H. A. H. Laue, J. S. African Chem. Inst., 1972,

25, 144; L. Brunel, Bull. Soc. chim. France, 1905, 33, 382.
⁴ Cf. R. B. Woodward and F. V. Brutcher, J. Amer. Chem. Soc., 1958, 80, 209.

 ⁶ A. Hassner, J. Org. Chem., 1968, 33, 2684.
⁶ S. Winstein, H. V. Hess, and R. E. Buckles, J. Amer. Chem. Soc., 1942, 64, 2796; S. Winstein and R. E. Buckles, *ibid.*, pp. 2780, 2787.

⁷ H. Hunsdiecker, C. Hunsdiecker, and E. Vogt, U.S.P. 2,176,181/1939; Chem. Abs., 1940, 34, 1685; A. McKillop, D. Bromley, and E. C. Taylor, J. Org. Chem., 1969, 34, 1172.

⁸ A. McKillop and E. C. Taylor, Chem. in Britain, 1973, 9, 4; R. C. Menzies, J. Chem. Soc., 1947, 1378.

Examples of the iodocarboxylation using thallium(I) acetate (Method A) and thallium(I) benzoate (Method B) are given in the Table.

1

	TABLE	
	Yields of iodocarboxylate ^a	
Alkene	Method Ab, c	Method B
(Ia)	98	60
ÌЫ	97	66
(Ic)	98	64
(IIa)	85	85
(IIb)	90	80
(IIc)	85	81
(III)	30 (IIIa)	
. ,	40 (IIIb)	54 (IIId)
	30 (IIIc)	46 (IIIe)
(IV)	56 (IIIb)	55 (IIId)
	38 (III,a)	45 (IIIe)

^a Yields recorded are of isolated material. ^b In all cases quantitative yields of TlI were recorded. ° In each case the reaction mixture was warmed to 90° in order to complete the reaction

Since the Prevost reaction with silver carboxylates provides a method for obtaining either cis- or trans-aglycols without recourse to reagents such as osmium tetroxide or performic acid attempts were made to convert the trans-iodoacetates into di-oxygenated derivatives. Solvolysis⁶ in wet acetic acid under reflux afforded high yields of the corresponding cis-hydroxyacetates while solvolysis in dry acetic acid with added sodium acetate afforded the trans-diacetates. Moreover, the overall conversion into the cis-hydroxyacetates could be effected from the original alkene without isolation of the α -iodocarboxylate.

Hitherto, the only synthetic transformation employing thallium(I) carboxylates and molecular halogen has been the Hunsdiecker reaction in which treatment of a carboxylate with bromine in carbon tetrachloride results in bromodecarboxylation to give alkyl bromides in high yields.7 The use of thallium(I) carboxylates for the formation of α -iodocarboxylates and their solvolysis products, extends the use of thallium(I) salts and the versatility of thallium in organic synthesis.8

(Received, 6th March 1973; Com. 316.)