The Mechanism of Insertion of an Acetylene into the Methylgold Bond: Structure of a Reaction Intermediate

By John A. J. Jarvis
(Corporate Labovatory, ICI Limited, The Heath, Runcorn, Cheshive)
and Antony Johnson and Richard J. Puddephatt*
(Donnan Laboratories, The University of Liverpool, Liverpool L69 3BX)

Summary The determination of the structure of a reaction intermediate gives strong evidence for an unusual mechanism of insertion of an acetylene into the methylgold bond.

The methylgold compounds MeAuL ($\mathbf{I} ; \mathrm{L}=$ tertiary phosphine) react with hexafluorobut-2-yne, $\mathrm{C}_{4} \mathrm{~F}_{6}$, to give intermediate complexes of composition (MeAuL) ${ }_{2} \mathrm{C}_{4} \mathrm{~F}_{6}$, (II). ${ }^{1}$ These complexes can then break down either to give the insertion compound cis-LAuC($\left.\mathrm{CF}_{3}\right)=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{CH}_{3}$, (III), or to give ethane and cis-LAuC($\left.\mathrm{CF}_{3}\right)=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{AuL}$, (IV) $)^{1-3}$. When $\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}$ a single isomer, (IIa) is formed but when $\mathrm{L}=\mathrm{PMe}_{3}$ two isomers (IIb) and (IIc) can be isolated.

The complexes (II) were thought to contain two MeAuL units with an acetylene bridge, ${ }^{1}$ in which case the two gold atoms in (II) should be identical. However, the ${ }^{197} \mathrm{Au}$ Mössbauer spectra contain two doublets for each isomer rather than the one expected for this formulation and comparison of the Mössbauer parameters with those for

Figure
model compounds ${ }^{4-6}$ shows that (II) are in fact mixed oxidation state complexes containing both $\mathrm{Au}^{\mathbf{I}}$ and Au III centres as indicated in the Table.

Table. ${ }^{197} \mathrm{Au}$ Mössbauer spectra ${ }^{\text {a }}$

Compound	I.S. $\mathrm{mm} \mathrm{s}^{-1}$	Q.S. $\mathrm{mm} \mathrm{s}^{-1}$	Oxidation state
(IIa)	$5 \cdot 11 \pm 0.01$	9.13 ± 0.04	III
	$4 \cdot 13 \pm 0.04$	9.44 ± 0.03	I
(IIb)	$5 \cdot 16 \pm 0.06$	9.27 ± 0.05	III
	$4 \cdot 37 \pm 0.04$	9.18 ± 0.02	I
(IIc)	$5 \cdot 28 \pm 0.26$	9.07 ± 0.13	III
	$4 \cdot 14 \pm 0 \cdot 26$	$9 \cdot 17 \pm 0 \cdot 10$	I

${ }^{\text {a }}$ Half width, $\Gamma=1.5-2.5 \mathrm{~mm} \mathrm{~s}^{-1}$ for all peaks.
This revised formulation is confirmed by a crystal structure determination for isomer (IIb). Crystal data $\mathrm{C}_{12} \mathrm{H}_{24}-$ $\mathrm{Au}_{2} \mathrm{P}_{2} \mathrm{~F}_{6}, \quad M=738 \cdot 3$; orthorhombic, $\quad a=20 \cdot 68(3), \quad b=$ $19 \cdot 20(1), c=10 \cdot 47(1) \AA$; space group $P b c a, D_{c}=2 \cdot 36$, $Z=8$. Intensities were measured for 1320 reflections and the structure refined to $R 0.081$. The stereochemistry of the molecule and selected bond lengths are shown in the Figure. The co-ordination of $\mathrm{Au}(2)$ is linear and that for $\mathrm{Au}(1)$ is
square planar with the bonds to $C(5)$ and $C(6)$ roughly perpendicular to the plane defined by the Au and P atoms. This configuration is expected to facilitate π-bonding between $\mathrm{Au}(1)$ and $\mathrm{C}(2)$. The distance between $\mathrm{Au}(1)$ and $\mathrm{Au}(2)$ is $3.31 \AA$. The compound (IIa) has a similar structure but (IIc) differs in having the cis-configuration at the square planar AuIII centre.

The overall mechanism of reaction of (I) with $\mathrm{C}_{4} \mathrm{~F}_{6}$ can therefore be interpreted as follows: transfer of a methyl group from one gold atom to a second with formation of the $\mathrm{C}_{4} \mathrm{~F}_{6}$ bridge leading to a mixed $\mathrm{Au}^{\mathrm{L}} \mathrm{Au}^{\text {III }}$ complex, (II), followed by reductive elimination from the AuIII centre to give the final products. Cleavage of the bonds from $\mathrm{Au}(1)$ to $C(5)$ and $C(6)$ gives ethane and (IV), while cleavage of the bonds to $\mathrm{C}(5)$ or $\mathrm{C}(6)$ and $\mathrm{C}(2)$ gives (I) and (III). It is interesting that the configuration about the $\mathrm{C}=\mathrm{C}$ bond is retained on formation of (III) during the reductive elimination step. ${ }^{7}$ This is also the case ${ }^{8}$ in the reaction of (IIb) with HCl which gives AuClPMe 3 and $c i s-\mathrm{HC}\left(\mathrm{CF}_{3}\right)=\mathrm{C}\left(\mathrm{CF}_{3}\right)-$ [trans- $\left.\mathrm{AuMe}_{3}\left(\mathrm{PMe}_{2}\right)\right]$.
(Received, 28th March 1973; Com. 438.)

