Novel Cleavage of a Phosphinoacetylene by Palladium(II) and Platinum(II): Preparation and Structure of Complexes of $\mathbf{1 , 3 - B i s}($ diphenylphosphino)-2-trifluoromethylpropene Derived from 3,3,3-Trifluoropropynyldiphenylphosphine

By Richard T. Simpson, Stephen Jacobson, and Arthur J. Carty*
(Chemistry Department, University of Waterloo, Waterloo, Ontario, Canada)
and Mathai Mathew and Gus J. Palenik*
(Chemistry Department, University of Florida, Gainesville, Florida)

Summary Unsymmetrical ditertiary phosphine complexes $\left[\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{C}\left(\mathrm{CF}_{3}\right)=\mathrm{CHPPh}_{2}\right]-\mathrm{MX}_{2}(\mathrm{M}=\mathrm{Pd}$ or Pt and $\mathrm{X}=\mathrm{Cl}$ or SCN) have been prepared by reaction of $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCF}_{3}$ with $\mathrm{MX}_{4}{ }^{2-}$ salts and characterized by an X-ray study of the $\operatorname{Pd}(\mathrm{SCN})_{2}$ derivatives.

Acetylenes react with metal carbonyls to give organometallic complexes formed via acetylene oligomerisation, ${ }^{1}$ $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ salts also oligomerise acetylenes, yielding in addition to organic products, complexes containing cyclobutadiene, cyclobutenyl, and σ, π-octatriene ligands. ${ }^{2}$ However, in some cases it is necessary to postulate cleavage of the acetylenic bond in order to account for the products. ${ }^{1,2}$ We have found that the activated phosphinoacetylene, $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCF}_{3}$, reacts with $\mathrm{MX}_{4}{ }^{2-}$ ions $(\mathrm{M}=\mathrm{Pd}$ or $\mathrm{Pt}, \mathrm{X}=\mathrm{Cl}$ or SCN) to produce unusual ditertiary phosphine complexes $\left[\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{C}\left(\mathrm{CF}_{3}\right)=\mathrm{CHPPh}_{2}\right] \mathrm{MX}_{2}$, (I). The result is an unprecedented example of the reaction of an acetylene with $\mathrm{Pd}^{\mathrm{II}}$ or $\mathrm{Pt}^{\mathrm{II}}$ which results in bond cleavage and the formation of a three-carbon chain from two acetylene
groups. The i.r. spectra of ($\mathrm{I} ; \mathrm{M}=\mathrm{Pd}, \mathrm{X}=\mathrm{Cl}$) showed no absorption in the range $1600-2500 \mathrm{~cm}^{-1}$ assignable to $\nu(\mathrm{C} \equiv \mathrm{C})$ of a co-ordinated acetylene; $\nu(\mathrm{C} \equiv \mathrm{C})$ in $\mathrm{Ph}_{2} \mathrm{PC} \equiv$ CCF_{3} occurs at $2200 \mathrm{~cm}^{-1}$. A square planar cis-arrangement was suggested by two strong $v(\mathrm{Pd}-\mathrm{Cl})$ bands at 317 and $299 \mathrm{~cm}^{-1}$ which were absent in the corresponding thiocyanate complex. A sharp doublet at $2117 \mathrm{~cm}^{-1}$ assignable to $\nu(\mathrm{C} \equiv \mathrm{N})$ was consistent with a cis-S-bonded isomer for the thiocyanate. A $100 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectrum of ($\mathrm{I} ; \mathrm{M}=$ $\mathrm{Pd}, \mathrm{X}=\mathrm{Cl}$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left[\delta\right.$-scale; 3.0 (dd) $\mathrm{CH}_{2},{ }^{2} J_{\mathrm{P}-\mathrm{H}} 11.0 \mathrm{~Hz}$, ${ }^{4} J_{\mathrm{P}-\mathrm{H}} 4.0 \mathrm{~Hz} ; 6.9$ (d) $\mathrm{CH},{ }^{2} J_{\mathrm{P}-\mathrm{H}} 6.0 \mathrm{~Hz} ; 7.7$ (m) due to phenyl H] suggested the presence of both CH_{2} and $=\mathrm{CH}$ groups. ${ }^{19} \mathrm{~F}$ n.m.r. spectra for all the compounds exhibited a singlet. In view of the unusual nature of the complex we undertook an X-ray investigation of the thiocyanate derivative ($\mathrm{I} ; \mathrm{M}=\mathrm{Pd}$ and $\mathrm{X}=\mathrm{SCN}$).

Crystal data: $\mathrm{PdC}_{30} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, yellow monoclinic crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}, M=782 \cdot 9, a=11 \cdot 019-$ (1), $b=17 \cdot 180(2), \quad c=17 \cdot 800(2) \AA, \quad \beta=102 \cdot 46(1)^{\circ}, D_{\mathrm{m}^{-}}$ (flotation) $=1.58, D_{\mathrm{c}}=1.580 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, \mathrm{Cu}-K_{\alpha}$ radia-
tion $(\lambda=1.5418 \AA)$, space group $P 2_{1} / c$. The structure was solved by the heavy-atom method and the present R value is $0.072 . \dagger$

Figure. A view approximately normal to the co-ordination plane, giving the atomic numbering and some pertinent distances. The $S(1)-C(1)-N(1)$ group is bent 48° out of the plane defined by $P d-S(1)-S(2)-P(1)-P(2)$.

The molecular structure, atomic numbering, and pertinent bond distances are shown in the Figure. The palladium atom is co-ordinated in a square planar fashion by two S-bonded thiocyanates and the two phosphorus atoms of the diphosphine. The $\mathrm{C}(4)-\mathrm{C}(5)$ distance of $1 \cdot 375(27) \AA$ is longer than a pure double-bond but the difference is not significant due to the large e.s.d. The $\mathrm{Pd}-\mathrm{P}$ distances (avg. $2 \cdot 274 \AA$) are similar to those found in cis $-\mathrm{Pd}(\mathrm{SCN})_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)$ of $2 \cdot 277 \AA^{4}$ and cis- $\mathrm{Pd}(\mathrm{NCS})$ (SCN) $\left[\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CBu}^{\mathrm{t}}\right]_{2}$ of $2 \cdot 279 \AA^{5}$ but are longer than in cis- $\mathrm{Pd}(\mathrm{NCS})(\mathrm{SCN})\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) .{ }^{6}$ The $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ angle of $90.0(2)^{\circ}$ is somewhat larger than the 89.31° in $c i s-\mathrm{Pd}-$ $\left(\mathrm{NCS}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right.$. ${ }^{7}$ Thus the 'bite' of $\mathrm{Ph}_{2}-$ $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ and $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{C}\left(\mathrm{CF}_{3}\right)=\mathrm{CHPPh} 2$ appear
to be similar although the thiocyanates are S-bonded in the latter and N -bonded in the former. The more rigid propene chain alters the orientations of the four phenyl groups sufficiently to allow the thiocyanates to S-bond in the present complex. However, the steric interactions are still sufficiently important so that the thiocyanate, $\mathrm{S}(1)-\mathrm{C}(1)-$ $N(1)$ is tipped 48° out of the co-ordination plane. The equality of the two Pd-S and Pd-P distances suggests that either π-bonding involving the Pd atom is minimal or that the π-bonding is independent of the tip of the thiocyanate ion. In any case, the presence of two S-bonded thiocyanates trans to phosphorus atoms is contrary to the π-bonding hypothesis of Turco and Pecile. ${ }^{8}$ These π-bonding arguments have been used extensively by others to rationalize thiocyanate linkage isomers in palladium and other systems. ${ }^{9}$ The characterization of the present complex together with additional studies of palladiumphosphine-thiocyanate complexes, ${ }^{4,7,10,11}$ suggest that π-bonding arguments should be viewed very critically.

The conversion of $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCF}_{3}$ into the ligand in (I) occurs in protonic solvents in the presence of metal salts. Reaction of $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCF}_{3}$ with $\mathrm{PdCl}_{2}\left(\mathrm{PhCN}_{2}\right.$ in dry benzene, for example, gives cis- $\mathrm{PdCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCF}_{3}\right)_{2}$ with only the phosphorus atoms of the ligand co-ordinated. Furthermore, cis- $\mathrm{PdCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCF}_{3}\right)_{2}$ is not an intermediate in the formation of ($\mathrm{I} ; \mathrm{M}=\mathrm{Pd}, \mathrm{X}=\mathrm{Cl}$) since treatment of this complex with $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ afforded a third complex, at present under X-ray study, containing no fluorine and neither $=\mathrm{CH}$ - nor CH_{2} protons. There was no evidence for σ-bonded complexes similar to those formed in the reaction of $\mathrm{PtCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{C} \equiv \mathrm{CMe}\right)_{2}$ with methoxide ion ${ }^{12}$ nor complexes derived from simple addition of solvent across the triple bonds of the phosphinoacetylene. Although the detailed mechanism of the reaction has yet to be established, these results confirm previous indications ${ }^{12}$ of enhanced reactivity for unco-ordinated $-\mathrm{C} \equiv \mathrm{C}$-bonds held in the proximity of a metal in phosphinoacetylene complexes.

We are grateful for a grant of computer time from the University of Florida Computing Center (G.J.P.) and to the National Research Council of Canada (A.J.C.) for financial support.
\dagger The relatively high R value and the large estimated standard deviations are due to the loss of solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ during data collection. The drop in the standard reflections of $c a .50 \%$ limited the data collection to a maximum 2θ value of 90°.

[^0]
[^0]: ${ }^{1}$ W. Hubel, 'Organic Syntheses via Metal Carbonyls', I. Wender and P. Pino eds., Interscience, New York, 1968, vol. 1, p. 273-342 and references therein.
 ${ }^{2}$ P. M. Maitlis, 'The Organic Chemistry of Palladium', Academic Press, New York, 1971, vol. II, p. 47.
 ${ }^{3}$ A. J. Carty, N. K. Hota, H. A. Patel, T. J. O'Connor, and T. W. Ng, Canad. J. Chem., 1971, 49, 2706.
 ${ }^{4}$ W. L. Steffen, M.Sc. Dissertation, University of Florida, Gainesville, Florida, August, 1972.
 ${ }^{5}$ T. W. Ng, A. J. Carty and G. J. Palenik, unpublished results.
 ${ }^{6}$ G. Beran and G. J. Palenik, Chem. Comm., 1970, 1354.
 ${ }^{7}$ M. Mathew and G. J. Palenik, unpublished results.
 ${ }^{8}$ A. Turco and C. Pecile, Nature, 1961, 191, 66.
 ${ }^{9}$ See for example, N. J. DeStefano and J. L. Burmeister, Inorg. Chem., 1971, 10, 998 and references therein.
 ${ }^{10}$ K. K. Chow and C. A. McAuliffe, Inorg. Nuclear Chem. Letters, 1972, 8, 1031.
 ${ }_{11}$ G. Beran, H. A. Patel, P. C. Chieh, and A. J. Carty, J.C.S. Dalton, 1973, 488.
 ${ }^{12}$ W. Hewertson and I. C. Taylor, Chem. Comm., 1970, 428.

