¹³C Nuclear Magnetic Resonance Spectra of Coproporphyrins

By RAYMOND J. ABRAHAM,* GEOFFREY E. HAWKES, and KEVIN M. SMITH

(The Robert Robinson Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX)

Summary Complete assignments of the ¹³C n.m.r. spectra of the tetramethyl esters of the four coproporphyrin type-isomers are presented, together with analyses of the spectra of the zinc(II) and thallium(III) chelates of coproporphyrin-I tetramethyl ester.

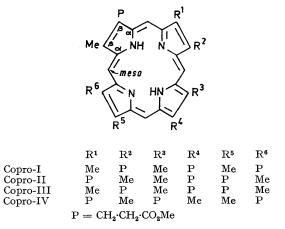

WE present the complete spectral assignments for the ¹³C n.m.r. spectra of the tetramethyl esters of the four coproporphyrin type-isomers¹ (Table). Previous studies of more diversely substituted porphyrins^{2,3} have given only incomplete assignments, and sometimes incomplete spectra.³ The appearance of the α -carbon atoms at similar chemical shifts to the β -carbons (Table) throws some doubt on the recent suggestion of Doddrell and Caughey³ that the ¹³C n.m.r. spectra of porphyrins afford evidence in favour of the "16-membered inner-pathway"⁵ for delocalisation of the π -electrons. This suggestion was put forward because the porphyrin β -carbon atoms appeared in the usual olefinic region, whereas the *meso*-carbons were considerably upfield, at chemical shifts comparable with carbon atoms of simple unsubstituted pyrroles. They concluded that the *meso*-carbon atoms were experiencing strong resonance

TABLE.	¹³ C Chemical	shifts ^a for	coproporphyrins
--------	--------------------------	-------------------------	-----------------

]	Nuclear carbon atoms			Side-chain carbon atoms				
	C_{α}	C_{β} -Me C_{β} -	$C_{\beta}-P$	mesod	CH ₃	CH ₂ -CH ₂ -CO-OCH ₈			
Copro-I	$ 143.5^{b}$	136.2	137-9	96.4	11.8	$22 \cdot 0$	37·1	173.0°	51.8
Copro-II	\dots 144·2 ^b	135.9	137.9	96·4 96·0	11.6	21.8	36.8	$172 \cdot 8$	51.5
Copro-III	144.0^{b}	135.8	137.8	96·4 (1) 96·0 (3)	11.4	21.7	36.8	$172 \cdot 8$	51.5
Copro-IV	\dots 143·4 ^b	$135.8 \\ 135.5$	$137.7 \\ 137.3$	96·0 (1) 95·8 (3)	$11.5 \\ 11.3$	21.6	36.8	172.7	51.4
Copro-I Tl(OH,H ₂ O)	147.5.146.6	138.4	139.9	98.1	11.7	$22 \cdot 2$	36.9	173.0	51.8
	18 19	109	106	147	15	12		-	
Čopro-I Zn	146·6, 145·6	135.9	137.7	96.0	11.5	21.8	36.9,	$172 \cdot 8$	51.5

 a δ , Relative to internal Me₄Si, measured at 25·2 MHz. b Broad (30—50 Hz) weak signals. c Tl-¹³C couplings, ± 1 Hz. d Numbers in parentheses refer to relative signal intensities.

Our assignments for the side-chains and *meso*-carbon atoms agree with these previous studies; however, we have in addition assigned the broad low field signals (δ 143—144) to the α -carbon resonances of the "pyrrole" rings, which in our compounds are quite distinct from the β -carbon resonances (δ 136—138). The α -carbon resonances were presumably not reported by the earlier workers^{2,3} on account of the broadening, which we ascribe to N–H tautomerism† in the porphyrin ring,⁴ rather than to nitrogen quadrupole effects.

effects due to delocalisation via the 16-membered inner-ring pathway, with the β -carbons left as pure double bonds. On this basis, however, the α -carbons should resonate in a similar position to the meso-carbons, whereas in fact they are very similar to the β -carbon atoms (Table). We conclude that there is little evidence for a 16-membered inner pathway from the ¹³C shifts.

We have further separated the β -carbons into those bearing methyl (Me) or propionic ester (P) substituents. Our assignment of the C_β-Me carbon to higher field is supported by the similar effects found in the benzene series (e.g. C₁ in toluene, δ 137.3; C₁ in methyl 3-phenylpropionate, δ 140.1).

The meso- and β -carbon atoms show additional fine structure in some of the type-isomers, thereby enabling ¹³C n.m.r. to be used for differentiation of the type-isomers. The appearance of single resonances for C_{β}-Me (or C_{β}-P) in copros-I and -II, and two resonances for copro-IV can be predicted from the influence of the nearest substituent on the adjacent "pyrrole" ring. This differentiation of the meso- and β -carbons in the type-isomers is, however, not much greater and less unequivocal than that obtained⁶ from their ¹H n.m.r. spectra.

In complete contrast, we find that the constancy of the carbon shifts provides a solid base from which the assignment of the zinc(II) and thallium(III) porphyrins can be made. In these compounds, the sharper signals of the α -carbons are further resolved, showing the different *ortho*

 \dagger The α -carbon atoms in zinc(II) and thallium(III) coproporphyrins, and in coproporphyrin-I tetramethyl ester measured in trifluoro-acetic acid, gave sharp signals.

substituent effects of the methyl and propionic ester substituents; again, the assignment follows by analogy with the benzene series (e.g. C_2 in toluene, δ 128.6; C_2 in methyl 3-phenylpropionate δ 127.9).

Thallium(III) coproporphyrin-I tetramethyl ester¹ shows extensive thallium-carbon splittings[‡] which were only differentiated from chemical shifts by observation of the ¹³C spectrum at 22.6 MHz. The interesting feature of these couplings is the small (18 Hz) two-bond coupling (cf. 107 and 147 Hz to the β - and meso-carbons respectively), and the comparable four-bond coupling (ca. 14 Hz) to the sidechain carbons. This has analogies in other ¹³C-metal couplings⁸ and also in ¹H-¹H couplings (cf. ${}^{2}J_{HH}$ vs. ${}^{3}J_{HH}$ in olefins), and supports the analogy of thallium and proton couplings, made originally by Evans.⁷

We thank Mr. G. H. Barnett for experimental assistance, and the S.R.C. for a grant to purchase the Varian XL-100 spectrometer and a fellowship (to G.E.H.). We also thank Dr. E. Randall (Queen Mary College) for the determination of the 22.6 MHz spectrum.

(Received, 27th March 1973; Com. 435.)

[‡] No differentiation between ²⁰³Tl-¹³C and ²⁰⁵Tl-¹³C splittings was observed, and we follow previous practice⁷ in referring to these as Tl-13C couplings.

- ² A. R. Battersby, J. Moron, E. McDonald, and J. Feeney, J.C.S. Chem. Comm., 1972, 920.
- ³ D. Doddrell and W. S. Caughey, J. Amer. Chem. Soc., 1972, 94, 2510.
- ⁴ C. B. Storm and Y. Teklu, *J. Amer. Chem. Soc.*, 1972, 94, 1745.
 ⁵ L. E. Webb and E. B. Fleischer, *J. Amer. Chem. Soc.*, 1965, 87, 667.

- ⁶ R. J. Abraham, P. A. Burbidge, A. H. Jackson, and D. B. MacDonald, J. Chem. Soc. (B), 1966, 621.
 ⁷ J. P. Maher and D. F. Evans, J. Chem. Soc., 1965, 637.
 ⁸ D. Doddrell, M. L. Bullpitt, C. J. Moore, C. W. Fong, W. Kitching, W. Adcock, and B. P. Gupta, Tetrahedron Letters, 1973, 665.

¹ These compounds were synthesised as described in R. J. Abraham, G. H. Barnett, E. S. Bretschneider, and K. M. Smith, Tetrahedron, 1973, 29, 553.