Biosynthesis of Vitamin B₁₂: the Macrocycle and Studies on the Geminal Methyl Groups of Ring c

By Alan R. Battersby, * Masataka Ihara, Edward McDonald, and Janet R. Stephenson

(University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

and Bernard T. Golding

(School of Molecular Sciences, University of Warwick, Coventry CV4 7AL)

Summary The biosynthesis of vitamin B_{12} is studied by ¹³C-spectroscopy on the derived heptamethyl ester (4); work with amino[5-¹³C]laevulinic acid and [Me-¹³C]methionine confirms that seven peripheral methyl groups are derived from methionine and proves that one of these is the *pro-R* methyl group on ring c.

THE corrin macrocycle of vitamin B_{12} (1) is biosynthesised from δ -aminolaevulinic acid¹ (2) via porphobilinogen² (3). At least six of the *C*-methyl groups were proved to be derived from methionine.¹ Recently, Shemin and Scott have shown that the C-1 methyl group [see (1)] is derived not from C-5 of (2)^{3,4} but from methionine.⁴

 13 C-Chemical shifts for the ester (4) with proton decoupling and FT at 25.2 MHz in $\rm C_6D_6$ ($\rm \delta$ from Me_4Si).

Sites		δ
7 Ester CO, C-6 and -11 ^a	••	176.0, 173.1, 172.6, 172.3
C-4, -9, -14, and -16		171.3, 170.2, 162.7 175.1 ^b , 174.9, ^b 171.8, ^b 163.1 ^b
C-5, -15		103.8, b 102. b, respectively ^c
C-10, -1, and -19		91.2, b 82.8, 75.0, respectively
C-3, -8, and -13	• •	57.1, 54.5, 53.8
7 OMe, overlapped		51.7, 51.3, 51.1
C-2, -7, -12, and -17		58·5, 49·0, 46·9 46·1
11 CH ₂ groups and C-18		42.4, 41.7, 39.8, 33.9, 33.2,
		31.9, 31.4, 30.9, or 30.7, 30.0,
		26.9, 26.0, 25.1
C-Methyl at C-1, -2, -7, -12		22.3,d 19.6,d 19.3,d 18.3,d
(pro-R), and -17		17.0 ^d
C-Methyl at C-5 and -15		16.0.d 15.6d
C-Methyl at C-12 (pro-S)	••	30.9 or 30.7

^a Three signals overlap at δ 171·3. ^b Only these seven signals observed for (4) in experiment with [5-¹³C](2). ^c Respective assignment by analogy³ with vitamin B₁₂ and will be confirmed. ^d Only these seven signals observed for (4) in experiment with [*M*e⁻¹³C]methionine.

For our concurrent ¹³C-studies on vitamin B_{12} , the spectra were measured on the derived heptamethyl ester⁵ (4). This is benzene soluble and with 45 skeletal carbons,

contains 17 fewer and three C-methyl groups less than the parent vitamin. The 13 C-spectrum of (4) shows 43 sharp signals largely assignable (Table) using Doddrell and Allerhand's work on other corrins⁶ together with our own measurements.

The compound $[5^{-13}C](2)$, synthesised in 57% overall yield from K¹³CN (90% enrichment) by a new method,⁷ was diluted[†] with unlabelled (2) and incorporated into vitamin B₁₂ by Propionibacterium shermanii. [Me-¹³C]Methionine was incorporated in a separate experiment. The ¹³C-n.m.r. spectra of the derived labelled esters (4) each showed seven singlets (Table) corresponding to the carbon atoms marked from (2) and \blacksquare from methionine. These results confirm the findings of Shemin and Scott and they add strength by being obtained from the ¹³C-spectra of a different corrin.

The geminal methyl groups on ring c are derived¹ one from methionine and one from C-2 of (2). Degradation⁺ of the ester (4) from the ¹³C-methionine experiment gave the imide (5) with 12% ¹³C-enrichment; a larger sample of ¹²C-imide prepared under identical conditions showed $[\alpha]_{\rm p} - 48.6^{\circ}$ (CHCl₃) corresponding to 11% inversion at C-13. The 3H singlet, τ 8.75, in the proton spectrum $(CDCl_3)$ of the ¹²C-imide (5) corresponds⁸ to the 12-pro-Rmethyl group; that for the pro-S group is at τ 8.64. The

¹³C-labelled imide gave an identical spectrum save that two new sharp peaks (J 128 Hz) were centred on the signal at au 8.75 which was of diminished intensity. When the spectrum was recorded in C_6D_6 , the C-methyl signals moved to τ 9.23 and 9.06, the former again being of lowered intensity and, importantly, still centred on ¹³C-satellites (J 128 Hz). It is thereby established that in the biosynthesis of vitamin B_{12} , the C-12 pro-R methyl group is the one derived from methionine. Thus the overall methylation process for ring c involves the formal trans-addition of Me and H as is the case for rings A, B, and D.

We thank Prof. A. Eschenmoser for a sample of the imide (5) and for unpublished information, Dr. B. A. Hems and Dr. W. F. J. Cuthbertson and their colleagues (Glaxo Research Limited) for a gift of vitamin B_{12} and for help with isolation methods, and the Nuffield Foundation and S.R.C. for financial support.

(Received, 11th April 1973; Com. 518.)

† Lowered ¹³C-enrichment to avoid ¹³C-¹³C coupling.

[†] Ozonolysis and isolation of crystalline ring c imide: T. L. Bogard and A. Eschenmoser, unpublished work.

 ¹ R. Bray and D. Shemin, J. Biol. Chem., 1963, 238, 1501 and refs. therein.
² S. Schwartz, K. Ikeda, I. M. Miller, and C. J. Watson, Science, 1959, 129, 40.
³ C. E. Brown, J. J. Katz, and D. Shemin, Proc. Nat. Acad. Sci. U.S.A., 1972, 69, 2585.
⁴ A. I. Scott, C. A. Townsend, K. Okada, M. Kajiwara, P. J. Whitman, and R. J. Cushley, J. Amer. Chem. Soc., 1972, 94, 8267 and 8269.

⁵ R. Keese, L. Werthemann, and A. Eschenmoser, unpublished results, cf. L. Werthemann, Diss. No. 4097, ETH Zürich, 1968.

⁶ D. Doddrell and A. Allerhand, Proc. Nat. Acad. Sci. U.S.A., 1971, 68, 1083; Chem. Comm., 1971, 728. ⁷ A. R. Battersby, E. Hunt, E. McDonald, and J. Moron, in preparation.

8 A. Eschenmoser, Special Lectures, 23rd I.U.P.A.C. Meeting, Boston, Butterworths, London, 1971, vol. 2, p. 69; P. Dubs, Diss. No. 4297, ETH, Zürich.