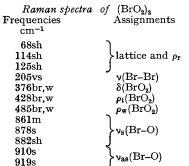
Raman Spectrum and Structure of Bromine Dioxide

By JEAN-LOUIS PASCAL and JACQUELINE POTIER*


(Laboratoire des Acides Minéraux associé au CNRS n° 79, Université des Sciences et Techniques du Languedoc, Place Eugéne Bataillon, 34060 Montpellier-Cédex)

Summary The Raman spectrum of bromine dioxide is interpreted as indicating that it has the dimeric structure Br_2O_4 with a Br-Br bond.

ALTHOUGH the structures of oxides of chlorine $Cl_2O_{7,1}$ $Cl_2O_{6,2}$ $ClO_{2,3}$ and Cl_2O^4 are quite well known this is not the case for oxides of bromine, and only Br_2O has been studied previously, by i.r. spectroscopy.⁵ Bromine dioxide was synthetised in crystalline form in a Raman tube (diam. 7 mm) by ozonising a solution of bromine in Freon 11 (1-6 g/l) at -50 °C.⁶ P₂O₅ was not used as drying agent.⁷ Iodometric and potentiometric analysis confirmed the composition BrO₂.

The Raman spectrum (Table 1) was recorded at -180 °C, in a sealed tube *in vacuo*. The spectrum shows five groups of lines in the internal vibration range and a very strong, sharp line at 205 cm⁻¹. Since for BrO₂ monomer only three groups of lines are expected, we conclude that the product is not a monomer, and we consider the following structures: (i) a chain or ring structure with bridging oxygen atoms as found previously for SeO_2^8 and $IO_2^{;9}$ (ii) a dimer with a central Br-Br bond; (iii) the ionic structures: BrO+BrO₃ or Br+BrO₄.

TABLE 1

s: strong; m: medium; w: weak; sh: shoulder; b: broad; v: very.

The valence vibrations of the Br-O-Br group would presumably be close to those for Br_2O (504 and 587 cm⁻¹)⁵ and for the Se-O-Se group in (SeO₂)₂ (543 and 660 cm⁻¹),⁸ *i.e.*, 600 cm^{-1} . An intense vibration would be expected for the Br-Br bond, at a lower frequency than that of Br₂ (300 cm^{-1}) , because the Br-Br bond energy in Br₂O₄ is expected to be lower than that of Br₂. Ionic structures should show an intense line characteristic of BrO_3^- and BrO₄ near 800 cm⁻¹.¹⁰,¹¹

The absence of lines between 504 and 861 cm⁻¹ eliminates hypotheses (i) and (iii). The presence of a very strong line at 205 cm^{-1} strongly favours the structure $O_2Br-BrO_2$. The symmetric N-N vibration in N₂O₄ has a similar high intensity.¹² It is difficult to assign this line to a lattice vibration, because ClO₂ lattice vibrations are in the range 174-40 cm⁻¹³ and those of Br₂ are in the range 110-49

and crystal field effects were neglected. The bands at $861-882 \text{ cm}^{-1}$ and $910-919 \text{ cm}^{-1}$ may be assigned respectively to the symmetric and antisymmetric Br-O valence vibrations. Assignment of the deformation modes is somewhat more difficult but Yamaguchi¹⁴ has shown that

the deformation modes of a group X_2Y_4 may be correlated with the deformation modes of the group XY_3 as follows:

We have therefore assigned the deformation modes of Br_2O_4 by comparison with those of BrO_3^- (see Table 2). Of the three lines at 68, 114, and 124 cm^{-1} , one could possibly be the rocking mode and the others must be assigned as lattice vibrations.

TABLE 2.	(Frequencies in cm ⁻¹).			
BrO ⁻		$\mathrm{Br}_{2}\mathrm{O}_{4}$		
$\delta_{s}(A_{1})$	418 →ρ _₩	(A,B) (A,B)	$\begin{array}{c} 485\\ 428 \end{array}$	
$\delta_{as}(E)$	$350 \leq_{\delta}^{\gamma t}$	(A,B)		

This preliminary study of the structure of BrO₂ shows the considerable differences between the oxides of the halogens in the solid state. ClO₂ is a monomer (as shown previously), BrO₂ is a dimer with a Br-Br bond, while IO₂ is a polymer containing I-O-I bridges.

(Received, 23rd March 1973; Com. 410.)

1 A. C. Pavia, J. Rozière, and J. Potier, Compt. rend., 1971, 273 C, 781; J. Rozière, J. L. Pascal, and A. Potier, Spectrochim. Acta, 1973, 29 A, 169.

- ² A. C. Pavia, J. L. Pascal, and A. Potier, Compt. rend., 1971, 272 C, 1425.
- ⁹ J. L. Pascal, A. C. Pavia, and J. Potier, *J. Mol. Structure*, 1972, 13, 381.
 ⁴ M. M. Rochkind and G. C. Pimentel, *J. Chem. Phys.*, 1965, 42, 1361; D. J. Gardiner, *J. Mol. Spectroscopy*, 1971, 38, 476.
 ⁵ C. Campbell, J. P. M. Jones, and J. J. Turner, *Chem. Comm.*, 1968, 888.
 ⁶ G. Brauer, 'Handbook of Preparative Inorganic Chemistry,' Academic Press, New York, 1963, vol. 1, p. 306.
 ⁷ J. L. Pascal, A. D. Detine, *Chem. Phys.*, 1965, 26, 26, 2000, 2

- ⁷ J. L. Pascal, J. Potier, and A. Potier, Communication to Soc. Chim. France Montpellier 16 Février 1973.
- G. A. Ozin and A. Vander Voet, J. Mol. Structure, 1971, 10, 173.
 W. E. Dasent and T. C. Waddington, J. Chem. Soc., 1960, 3350.
- ¹⁰ K. Nakamoto, 'Infrared Spectra of Inorganic and Coordination Compounds,' Wiley, New York, 1970.
 ¹¹ L. C. Brown, G. M. Begun, and G. E. Boyd, J. Amer. Chem. Soc., 1969, 91, 2250.

- ¹² G. M. Begun and W. H. Fletcher, J. Mol. Spectroscopy, 1960, 4, 388.
 ¹³ M. Suzuki, T. Yokoyama, and M. Ito, J. Chem. Phys., 1969, 51, 1929.
 ¹⁴ A. Yamaguchi, Nippon Kagaku Zasshi, 1959, 80, 1109.

cm¹.¹⁰ Since each bromine has an unshared electron pair,
it is reasonable that
$$Br_2O_4$$
 should have a structure similar
to that of several other X_2Y_4 compounds (P_2I_4 , P_2CI_4 , N_2F_4 ,
 N_2H_4) which have C_{2v} or C_2 symmetry. The number and
width of the observed peaks are consistent with this
hypothesis.

In this first analysis, in-phase and out-of-phase-splittings