Analysis of the Multinuclear Magnetic Resonance Spectra of 1,1,1,4,4,4-Hexafluorobutane

By RAYMOND J. ABRAHAM* and PHILLIP LOFTUS

(The Robert Robinson Laboratories, The University of Liverpool, Liverpool L69 3BX)

Summary The use of heteronuclear noise decoupling combined with the observation of the ¹³C and ¹³Csatellite spectra enable the chemical shifts and coupling constants of all the magnetic nuclei in 1,1,1,4,4-hexafluorobutane to be obtained; these show that the compound exists entirely as the *trans*-rotamer in solution.

ALTHOUGH the use of ¹³C-satellite spectra to obtain couplings between chemically equivalent nuclei (e.g. CH_2X · CH_2X) is well established,^{1,2} the use of this method combined with heteronuclear decoupling and the observation of the ¹³C spectrum to analyse more complex spin systems has not been detailed.

We give the complete analysis of the ¹H, ¹⁹F, ¹³C spectra of CF_3 - CH_2 - CH_2 - CF_3 (I). This is a strongly coupled ten-

spin system with over 2000 allowed transitions and the complexity of the resulting ¹H and ¹⁹F spectra lead to extensive overlapping and therefore give many broad and unresolved lines, not suitable for iterative computer analyses.

Observation of the ¹³C-satellite ¹H spectrum under conditions of ¹⁹F noise decoupling gave the characteristic aa'bb' sub-spectrum of the AA'BB'X system (CF₃)¹³CH₂-·CH₂(CF₃) from which the ³J_{HH} couplings are readily obtained. This spectrum combined with the ¹⁹F decoupled ¹³C spectrum gave the complete analysis of this AA'BB'X system, enabling both the ¹H isotope shift and the relative signs of J_{AX} and J_{BX} to be found. As the ¹J_{CH} (J_{AX}) is known to be positive this gives the sign of ²J_{CH} (J_{BX}) as negative.

Again, although the ¹³C spectrum of the ¹³CF₃·CH₂-

TABLE.	Chemical	shifts ^a c	and	couplings .	for	CF ₃ ·C	$CH_2 \cdot CH_2 \cdot CF_2$	s ^b
--------	----------	-----------------------	-----	-------------	-----	--------------------	------------------------------	----------------

ιH	(¹³ C–H)	2.458	³∫нн	4.97	¹ J _{CF}	274.37
19F	(¹³ C–F)	$2 \cdot 462 \\ 70 \cdot 14$	³ Јнн, ¹ Јсн	$11.54 \\ 132.24$	² Јс г ³ Јсг	30.9 2.4
¹³ C	CH_2	70.02 28.8	² Јсн ³ Јнг	$({}^{13}CH_2 \cdot CH_2) - 5 \cdot 02 \\ 10 \cdot 46$	⁴ Јс f ⁵ Ј ff	0·0 1·50
	CF,	$127 \cdot 2$	⁴ / HF	-0.55		

^a ¹H, ¹³C δ values, ¹⁹F ϕ^* values. ^b 30% v/v in (CD₃)₂CO.

·CH₂·CF₃ species gave a broad unresolved multiplet, a similar analysis of the ¹³C-satellites of the ¹⁹F spectrum with ¹H noise decoupling combined with the observation of the ¹³C spectrum under the same conditions gave all the ¹³C-F and F-F couplings in the molecule. As the fluorines are not strongly coupled $({}^{5}J_{FF} + 1 \cdot 5 \text{ Hz})$ only the magnitudes of these couplings can be determined.

With this information the complex ¹H and ¹⁹F spectrum of the ¹²C species can be completely analysed to give finally the HF coupling constants. The couplings and chemical shifts thus obtained are given in the Table.

The magnitudes of the ${}^{3}J_{\text{HH}}$ couplings of 4.97 and 11.54

Hz are consistent with on overwhelming predominance of the trans-rotamer. Using the corresponding values of the couplings in the trans-rotamer of CD₃·CH₂·CH₂·CD₃ of 4·40 and 12.67 Hz⁴ combined with the known dependence of such couplings on substituent electronegativity⁵ (using the CF_3 group electronegativity of Hagele et al.⁶) gives calculated values for the trans-rotamer of (I) of 4.94 and 11.92 Hz, in excellent agreement with the observed couplings. The $^5J_{\rm FF}$ coupling of 1.5 Hz is similar to that in perfluorobutane $(2.0 \text{ Hz})^7$ which also exists predominently in the trans-conformation.

(Received, 3rd May 1973; Com. 628.)

- ¹ N. Sheppard and J. J. Turner, Proc. Roy. Soc., 1959, A252, 506.
- ² N. Sneppard and J. J. 10ther, Proc. Roy. Soc., 1939, A252, 506.
 ² R. J. Abraham, 'Analysis of High Resolution NMR Spectra,' Elsevier, Amsterdam, 1971, ch. 7.
 ³ J. W. Emsley, J. Feeney, and L. H. Sutcliffe, 'High Resolution NMR Spectroscopy, 'Pergamon, Oxford, 1966.
 ⁴ P. B. Waller and E. W. Garbisch, J. Amer. Chem. Soc., 1972, 94, 5310.
 ⁵ R. J. Abraham and G. Gatti, J. Chem. Soc. (B), 1969, 961.
 ⁶ G. Hagele, R. K. Harris, and P. Satori, Org. Magn. Resonance, 1971, 3, 463.
 ⁷ R. K. Harris and C. M. Woodman, J. Mol. Spectroscopy, 1968, 26, 432.