# Analysis of the Multinuclear Magnetic Resonance Spectra of 1,1,1,4,4,4-Hexafluorobutane 

By Raymond J. Abraham* and Phillip Loftus<br>(The Robert Robinson Laboratories, The University of Liverpool, Liverpool L69 3BX)

Summary The use of heteronuclear noise decoupling combined with the observation of the ${ }^{13} \mathrm{C}$ and ${ }^{13} \mathrm{C}$ satellite spectra enable the chemical shifts and coupling constants of all the magnetic nuclei in 1,1,1,4,4-hexafluorobutane to be obtained; these show that the compound exists entirely as the trans-rotamer in solution.

Although the use of ${ }^{13} \mathrm{C}$-satellite spectra to obtain couplings between chemically equivalent nuclei (e.g. $\mathrm{CH}_{2} \mathrm{X}$ $\cdot \mathrm{CH}_{2} \mathrm{X}$ ) is well established, ${ }^{1,2}$ the use of this method combined with heteronuclear decoupling and the observation of the ${ }^{13} \mathrm{C}$ spectrum to analyse more complex spin systems has not been detailed.

We give the complete analysis of the ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$ spectra of $\mathrm{CF}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CF}_{3}$ (I). This is a strongly coupled ten-
spin system with over 2000 allowed transitions and the complexity of the resulting ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ spectra lead to extensive overlapping and therefore give many broad and unresolved lines, not suitable for iterative computer analyses.

Observation of the ${ }^{13} \mathrm{C}$-satellite ${ }^{1} \mathrm{H}$ spectrum under conditions of ${ }^{19} \mathrm{~F}$ noise decoupling gave the characteristic aa'bb' sub-spectrum of the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{X}$ system $\left(\mathrm{CF}_{3}\right)^{13} \mathrm{CH}_{2}{ }^{-}$ . $\mathrm{CH}_{2}\left(\mathrm{CF}_{3}\right)$ from which the ${ }^{3} J_{\text {HH }}$ couplings are readily obtained. This spectrum combined with the ${ }^{19} \mathrm{~F}$ decoupled ${ }^{13} \mathrm{C}$ spectrum gave the complete analysis of this $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{X}$ system, enabling both the ${ }^{1} \mathrm{H}$ isotope shift and the relative signs of $J_{\Delta x}$ and $J_{\mathrm{BX}}$ to be found. As the ${ }^{1} J_{\text {CH }}$ ( $J_{\mathrm{Ax}}$ ) is known to be positive this gives the sign of ${ }^{2} J_{\mathrm{CH}}$ ( $J_{\mathrm{BX}}$ ) as negative.

Again, although the ${ }^{13} \mathrm{C}$ spectrum of the ${ }^{13} \mathrm{CF}_{3} \cdot \mathrm{CH}_{2}{ }^{-}$

Table. Chemical shifts ${ }^{\mathrm{a}}$ and couplings for $\mathrm{CF}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CF}_{3}{ }^{\mathrm{b}}$

| ${ }^{1} \mathrm{H}$ | $\left({ }^{13} \mathrm{C}-\mathrm{H}\right)$ | $2 \cdot 458$ | ${ }^{3} \mathrm{JHH}$ | $4 \cdot 97$ |  | ${ }^{1} \mathrm{JCF}$ | 274.37\| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $2 \cdot 462$ | ${ }^{3} \mathrm{HHH}$. | 11.54 |  | ${ }^{2} \mathrm{JCF}$ | \|30.9| |
| ${ }^{19} \mathrm{~F}$ | $\left({ }^{13} \mathrm{C}-\mathrm{F}\right)$ | $70 \cdot 14$ | ${ }^{1} \mathrm{JCH}$ | $132 \cdot 24$ |  | ${ }^{3} \mathrm{~J}$ CF | 2.4 |
|  |  | $70 \cdot 02$ | ${ }^{2} \mathrm{JCH}$ | $\left({ }^{13} \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right)-$ | $5 \cdot 02$ | ${ }^{4}$ JCF | 0.0 |
| ${ }^{13} \mathrm{C}$ | $\mathrm{CH}_{2}$ | $28 \cdot 8$ | ${ }^{3}$ JHF | 10.46 |  | ${ }^{5} \mathrm{JFF}$ | 1.50\| |
|  | $\mathrm{CF}_{3}$ | 127.2 | ${ }^{4}$ JHF | $-0.55$ |  |  |  |

${ }^{\mathrm{a}}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \delta$ values, ${ }^{19} \mathrm{~F} \phi^{*}$ values. ${ }^{\mathrm{b}} 30 \% \mathrm{v} / \mathrm{v}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.
$\cdot \mathrm{CH}_{2} \cdot \mathrm{CF}_{3}$ species gave a broad unresolved multiplet, a similar analysis of the ${ }^{13} \mathrm{C}$-satellites of the ${ }^{19} \mathrm{~F}$ spectrum with ${ }^{1} \mathrm{H}$ noise decoupling combined with the observation of the ${ }^{13} \mathrm{C}$ spectrum under the same conditions gave all the ${ }^{13} \mathrm{C}-\mathrm{F}$ and F-F couplings in the molecule. As the fluorines are not strongly coupled ( $\left.{ }^{5} J_{\mathrm{FF}} \quad 1.5 \mathrm{~Hz}\right)$ only the magnitudes of these couplings can be determined.

With this information the complex ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ spectrum of the ${ }^{12} \mathrm{C}$ species can be completely analysed to give finally the HF coupling constants. The couplings and chemical shifts thus obtained are given in the Table.

The magnitudes of the ${ }^{3} J_{\text {ни }}$ couplings of 4.97 and 11.54

Hz are consistent with on overwhelming predominance of the trans-rotamer. Using the corresponding values of the couplings in the trans-rotamer of $\mathrm{CD}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CD}_{3}$ of $4 \cdot 40$ and $12.67 \mathrm{~Hz}^{4}$ combined with the known dependence of such couplings on substituent electronegativity ${ }^{5}$ (using the $\mathrm{CF}_{3}$ group electronegativity of Hagele et al. ${ }^{6}$ ) gives calculated values for the trans-rotamer of (I) of 4.94 and 11.92 Hz , in excellent agreement with the observed couplings. The ${ }^{5} J_{\mathrm{FF}}$ coupling of 1.5 Hz is similar to that in perfluorobutane ( 2.0 Hz$)^{7}$ which also exists predominently in the trans-conformation.
(Received, 3rd May 1973; Com. 628.)
${ }^{1}$ N. Sheppard and J. J. Turner, Proc. Roy. Soc., 1959, A252, 506.
${ }^{2}$ R. J. Abraham, 'Analysis of High Resolution NMR Spectra,' Elsevier, Amsterdam, 1971, ch. 7.
${ }^{3}$ J. W. Emsley, J. Feeney, and L. H. Sutcliffe, 'High Resolution NMR'Spectroscopy, 'Pergamon, Oxford, 1966.
${ }^{4}$ P. B. Waller and E. W. Garbisch, J. Amer. Chem. Soc., 1972, 94, 5310.
${ }^{5}$ R. J. Abraham and G. Gatti, J. Chem. Soc. $(B), 1969,961$.
${ }^{6}$ G. Hagele, R. K. Harris, and P. Satori, Org. Magn. Resonance, 1971, 3, 463.
${ }^{7}$ R. K. Harris and C. M. Woodman, J. Mol. Spectroscopy, 1968, 26, 432.

