Deceptive ¹³C Nuclear Magnetic Resonance Spectra in Bis-phosphine Metal Derivatives

By DAVID E. AXELSON and CLIVE E. HOLLOWAY*

[Chemistry Department, York University, Downsview (Toronto) M3 J 1P3, Canada]

Summary The proposal that ¹³C n.m.r. should be more widely applicable than ¹H n.m.r. for determining the stereochemistry of bis-phosphine metal complexes is shown to be invalid.

THE use of ¹H n.m.r. spectroscopy for the determination of stereochemistry in bis-phosphine metal complexes has been well documented.¹ There are some exceptions to the general rule that only trans complexes exhibit characteristic triplet resonances due to virtual coupling between the phosphorus atoms.² It has recently been suggested that ¹³C n.m.r. should be a more applicable technique in this respect.³ We question this proposal, because ${}^{2}J_{PH}$ and ${}^{1}J_{PC}$ are often quite comparable, and also because the ${}^{1}H$ and ¹³C n.m.r. spectra are of different types. The ¹H spectra are typically of the $AA'X_nX'_n$ type $(A = {}^{31}P, X = {}^{1}H)$, whereas the ${}^{13}C$ spectra are of the AA'X type $(X = {}^{13}C)$. This is because in natural abundance ¹³C n.m.r. spectroscopy the average substituted molecule contains only one ¹³C nucleus. The behaviour of $AA'X_nX'_n$ and AA'X spectra, although similar in some respects, differ drastically under the conditions often encountered in bis-phosphine metal complexes. The ¹³C(X) part of a PP' ¹³C (AA'X) spectrum is normally a triplet⁴ except when J_{PP}' is very much less than $J_{CP} - J_{P'C}$. This means that for relatively similar J_{PH} and J_{PC} values, the triplet will occur in the ¹³C spectrum at much smaller values of J_{PP} than it would have in the ¹H spectrum (where J_{PP} has to exceed $J_{PH} - J_{P'H}$ by an appreciable amount). Thus in cases where the proton spectrum of a phosphine group is too complex to use, the much simpler ¹³C n.m.r. spectrum could be more ambiguous, especially in the borderline cases. When J_{PP} approaches zero a doublet will be observed in the ¹³C spectrum provided that $J_{PC} >> J_{P'C}$, otherwise two doublets will occur.⁴

We have examined a series of cationic π -allyl palladium complexes by ¹³C n.m.r. Related bis-phenyl phosphine derivatives have been shown⁵ to give ¹H n.m.r. spectra typical of the "intermediate J_{PP} ' type", and similar ¹H spectra were obtained in the present series. By contrast, the ¹³C n.m.r. spectra showed clean triplets for every carbon to which phosphorus coupling was observable (Figure).

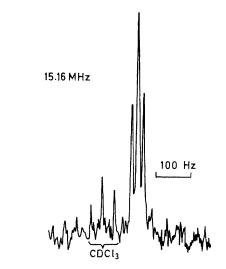


FIGURE. ¹³C n.m.r. spectra of allyl - CH_2 for $[Pd(2-methallyl) (PEt_2Ph)_2]$ + BF_4^- .

Here then are examples of undeniably *cis* phosphine complexes with ${}^{2}J_{PP}$ values not excessively large in which triplet ${}^{13}C$ resonances are seen. Clearly, unless analysed in the context of an AA'X system, the conclusions drawn

Derivative (BF₄- salt)		C_1 and C_3	18C Che Aliyi C2	emical shift CH _a	ts ^a (p.p.m.) ortho) Phenyl ^b meta	tara	Other
(1)		1 0	-	v			4	0
$\text{AllylPd}(\text{PPh}_3)_2^+$	••	78.9	$127 \cdot 3$		133.5	128.0	130.0	
		t(15·0)°	t(8)		t(6·5)°	t(5·1)		
AllylPd(PEt ₂ Ph) ₂ +		71.6	122.6		131.0	128.8	130.5	Et: CH ₂ 18·3 CH ₃ 8·2
		t(15·0)	t(7)		t(4·6)	t(4·8)		t(13·1)
$2\text{-}MethallylPd(\text{PEt}_2\text{Ph})_2^+$		71.0	136-3	23.7	ì 30 -8	128.7	130.3	Et: CH. 18.5 and 17.9
		••••	-000	-0 -	$t(5\cdot 2)$	t(4·6)		$2 \times t(12.9)$
		t(15·9)	t(7·5)		c(0 1)	0(4.0)		$CH_3 8.4 \text{ and } 8.1$

TABLE. ¹³C n.m.r. data

^a Relative to Me₄Si.

^b Tertiary carbon not positively identified. ^c t = triplet [splitting between components in $Hz = \frac{1}{2}(J_{PC}-J_{P'C})$].

would be misleading or the structures inferred would be wrong.

It is interesting to note the long range shielding effects operative in $^{13}\mathrm{C}$ n.m.r. The ethyl group in bis-diethylphenylphosphine derivatives of π -2-methallyl palladium are

markedly anisochronous, while in the analogous π -allyl palladium derivatives no such nonequivalence is observed.

We thank Varian Associates for the use of an NV-14 FT NMR.

(Received, 16th April 1973; Com. 542.)

J. F. Nixon and A. Pidcock, Ann. Rev. N.M.R. Spectroscopy, 1969, 2, 345.
F. B. Ogilvie, J. M. Jenkins, and J. G. Verkade, J. Amer. Chem. Soc., 1970, 92, 1916, and references therein.
B. E. Mann, B. L. Shaw, and R. E. Stainbank, J.C.S. Chem. Comm., 1972, 151.
R. J. Abraham and H. J. Bernstein, Canad. J. Chem., 1961, 39, 216.
I. Bowy I. Chem. Soc. (A) 1092, 774

⁵ J. Powell and B. L. Shaw, J. Chem. Soc. (A), 1968, 774.