## cis-trans Isomerisation and Ligand Exchange Reactions of an Isoquinoline–Platinum(II) Complex

By JOHN POWELL\* and DAVID G. COOPER

(Lash Miller Chemical Laboratories, University of Toronto, Toronto M5S 1A1, Ontario, Canada)

Summary The previous postulate<sup>1</sup> of a high-energy barrier to rotation about the Pt-N bond in *trans*-[PtCl<sub>2</sub>- $(C_2H_4)$ (isoquinoline)] is shown to be incorrect.

IT was recently proposed, on the basis of <sup>1</sup>H n.m.r. data, that *trans*-[PtCl<sub>2</sub>(C<sub>2</sub>H<sub>4</sub>)(isoquinoline)] (I) exists in two forms.<sup>1</sup> In one the isoquinoline was postulated to be coplanar with the co-ordination plane with solvolysis of the isoquinoline ligand by CDCl<sub>3</sub> being fast on the n.m.r. time scale (no <sup>195</sup>Pt coupling to H<sup> $\alpha$ </sup> or H<sup> $\alpha'$ </sup> at room temperature).<sup>1</sup> In the other the plane of the isoquinoline ligand is vertical to the co-ordination plane with solvolysis being slow on the n.m.r. time scale (<sup>196</sup>Pt-H<sup> $\alpha$ </sup> and H<sup> $\alpha'$ </sup> coupling in CDCl<sub>3</sub> at room temperature).<sup>1</sup> Since the interconversion of the two isomers takes *ca.* 3 days at room temperature,<sup>1</sup> the above postulate infers an unusually large energy barrier to rotation about the Pt-N bond. We here report studies of (I) that show the above proposals to be incorrect.

The <sup>1</sup>H n.m.r. spectrum of freshly prepared (I) in CDCl<sub>a</sub> at room temperature is shown in Figure (a). On standing for 24 h very broad <sup>195</sup>Pt satellites to  $H^{\alpha}$  and  $H^{\alpha'}$  are observed together with a new ethylene proton resonance of low intensity [see Figure (b)]. On further standing the <sup>195</sup>Pt satellite of  $H^{\alpha}$  and  $H^{\alpha'}$  sharpen and the new ethylene resonance grows to the equilibrium situation shown in Figure (c). The observation of a progressive change in the line shape of the <sup>195</sup>Pt satellites of  $H^{\alpha}$  and  $H^{\alpha'}$  indicates a gradual change in the rate of isoquinoline exchange for the complex molecules in solution. For the proposal of Orchin and Spaulding to be correct the <sup>195</sup>Pt satellites would have grown in intensity during the 3 days but would not have undergone changes in line shape. The new ethylene proton resonances [see Figure (c)] we assign to the second isomer which is not very soluble in CDCl<sub>3</sub>. If a high initial concentration of (I) in CDCl<sub>3</sub> is used this second isomer precipitates from solution. Far i.r. studies show this isomer to be cis-[PtCl<sub>2</sub>(C<sub>2</sub>H<sub>4</sub>)(isoquinoline)] (II) [ $v_{Pt-Cl}$  (Nujol) 309, 294 cm<sup>-1</sup>; trans-isomer (I)  $v_{Pt-cl}$  345 cm<sup>-1</sup>]. As previously reported<sup>1</sup> heating (I) converts it into (II).

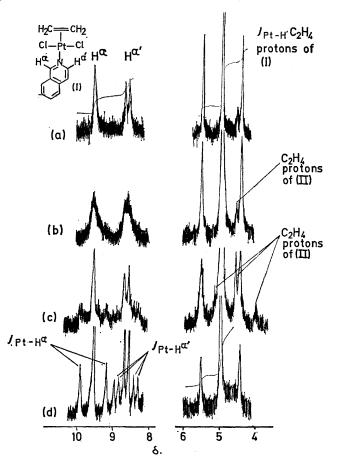



FIGURE. 60 MHz <sup>1</sup>H N.m.r. spectra recorded at  $34^{\circ}$  in CDCl<sub>3</sub>: (a) freshly prepared (I) (0·2M); (b) same solution after standing at 20° for 24 h; (c) same solution after standing at 20° for ca. 3 days; (d) freshly prepared (I) in the presence of a 10% molar quantity of [PtCl<sub>2</sub>(C<sub>2</sub>H<sub>4</sub>)]<sub>2</sub>.

## J.C.S. CHEM. COMM., 1973

Formation of the cis-isomer (II) inhibits isoquinoline exchange in (I). The complex [PtCl<sub>2</sub>(C<sub>2</sub>H<sub>4</sub>)]<sub>2</sub> is very effective in producing an immediate inhibition of isoquinoline exchange in (I)—see Figure (d). (<sup>195</sup>Pt coupling to  $H^{\alpha}$ and  $H^{\alpha'}$  is clearly resolved indicating that isoquinoline exchange is slow on the n.m.r. time scale). Conversely the addition of isoquinoline to freshly prepared (I) in CDCl<sub>3</sub> at -60° induces collapse of the <sup>195</sup>Pt satellites of  $H^{\alpha}$  and  $H^{\alpha'}$ . The addition of isoquinoline also increases the rate of isomerization of (I) into (II). These observations may be accounted for by the following scheme:

$$trans-PtCl_2(C_2H_4)L^* + S_{\underline{\phantom{a}}} trans-[PtCl_2(C_2H_4)S] + L^* \quad (1)$$

v. fast  
trans-PtCl<sub>2</sub>(C<sub>2</sub>H<sub>4</sub>)L+L\*
$$\xrightarrow{trans-[PtCl_2(C_2H_4)L*]+L}$$
 (2)  
slow

$$trans-PtCl_2(C_2H_4)L + L \underbrace{---cis-[PtCl_2(C_2H_4)L]}_{(3)} + L$$

$$cis-PtCl_2(C_2H_4)L+L_{\_\_}cis-[PtCl(C_2H_4)L_2]Cl$$
 (4)

SCHEME. 
$$L = isoquinoline; S = solvent.$$

<sup>1</sup> L. Spaulding and M. Orchin, Chem. Comm., 1972, 1249.

- <sup>2</sup> D. G. Cooper and J. Powell, J. Amer. Chem. Soc., 1973, 95, 1102. <sup>8</sup> D. G. Cooper and J. Powell, Canad. J. Chem., 1973, 51, 1634.

Solvolysis of (I) (equation 1) generates a small amount of free isoquinoline. Loss of <sup>195</sup>Pt coupling to  $H^{\alpha}$  and  $H^{\alpha'}$  in freshly prepared CDCl<sub>a</sub> solutions of (I) is due to a fast  $S_N 2$ exchange of free and co-ordinated isoquinoline (equation 2). A slow isoquinoline catalysed isomerization of (I) into (II) (equation 3) introduces equilibrium (4) which has the effect of reducing the concentration of free isoquinoline in the system {Addition of  $[PtCl_2(C_2H_4)]_2$  has the same effect as (4) }. This results in a decrease in the rate of isoquinoline exchange in (I) (equation 2) and thus accounts for the gradual resolution of the <sup>195</sup>Pt satellites of  $H^{\alpha}$  and  $H^{\alpha'}$ . The formation of a new species containing two isoquinolines per Pt has been confirmed by n.m.r. studies of (I), in the presence of excess of isoquinoline, at  $-60^{\circ}$  though a complete structural characterization of this species has not as yet been achieved. The equations (1)—(4) are similar to those proposed to account for PR<sub>3</sub> exchange and *cis-trans* isomerization of the complexes  $[MCl_2(PR_3)_2]$  (M = Pt, Pd).<sup>2,3</sup> This work was supported by the National Research Council of Canada.

(Received, 30th April 1973; Com. 618.)