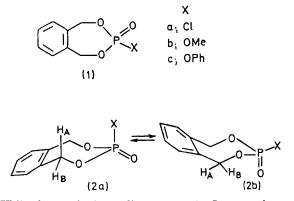
Eu(fod)₃ Induced ${}^{3}J_{HP}$ Variation and Conformational Changes in Seven-membered-ring Phosphates


By TAKEO SATO* and KEIJI GOTO

(Department of Chemistry, Tokyo Metropolitan University, Setagaya-ku, Tokyo, Japan 158)

Summary A conformational equilibrium between the two chair forms, (2a) and (2b), has been established for the 3-substituted 1,5-dihydro-2,4,3-benzodioxaphosphepin 3-oxides (1) with the aid of Eu(fod)₃, which caused a large variation of ${}^{3}J_{\rm HP}$ attributable to the increase of the axial phosphoryl conformer.

MANY studies of six-membered-ring phosphorus heterocycles have been reported, but larger homologues have received little attention. While carrying out a conformational analysis of the 3-substituted 1,5-dihydro-2,4,3benzodioxaphosphepin 3-oxides (1)[†] we observed a variation of ${}^{3}J_{\rm HP}$ on addition of the lanthanide shift reagent, from which conformational aspects of this mobile system were deduced.

¹H N.m.r. data are shown in the Table. Coupling constants were determined from the AB part of an ABX (X=P) pattern. Spectra are simplified to an AMX type with the Eu or Pr reagent which co-ordinates at the phosphoryl oxygen. Plots of chemical shifts vs. [shift reagent]/ [1] are linear.

While the geminal coupling constant, J_{AB} , remains constant, the two sets of ${}^{3}J_{HP}$ vary greatly and in a comple-

 \dagger 3-Chloro-1,5-dihydro-2,4,3-benzodioxaphosphorepin 3-oxide (1a), m.p. 135—139°, was prepared from phthalyl alcohol and phosphorus oxychloride. Treatment of (1a) with methanol or phenol gave methyl (1b), m.p. 126·5—128°, and phenyl phosphates (1c), m.p. 96—97°. Satisfactory analytical and spectral data were obtained for these compounds.

mentary manner. This is not expected from a consideration of substituent effects¹ and suggests perturbation to the conformational equilibrium.²

The stable conformation of the cycloheptenes and their benzologues is the chair form.³ Our results (Table) show an equilibrium between the two chair forms, (2a) and (2b), following from a Karplus-like correlation⁴ between ³J (POCH) and the dihedral angles (\angle POCH_{ax} 30°, \angle POCH_{eq} 150°).

Compound (1c) exists predominantly in the chair form (2a; X=OPh). This is supported by $\nu_{P=0}$ (1320 cm^{-1} in possibly reflecting a greater stability of the conformer (2a)and a decreased basicity of the phosphoryl oxygen due to the electronegative chlorine atom.

The methyl ester (1b) shows $y_{P=0}$ at 1285 cm⁻¹ as a broad peak, indicating conformational mixtures. Without the shift reagent, the ${}^{3}J_{HP}$ values are similar. That this is not due to other conformers such as twist-boat, but is caused by the presence of two chair forms in nearly equal amounts, can be proved by Eu(fod)₃ addition. The shifted spectrum shows the presence of a greater proportion of (2b; X =OMe).§

Compound	$[Eu(fod)_3]/[substrate]$	$J_{\mathbf{AB}}$	Jap	$J_{ m BP}$	δъ	δв	$\delta_B - \delta_A$
(1a)	0	13.3	10.6	29.6	5.45	5.07	$-22 \cdot 4$
	0.2	13.4	10.2	$28 \cdot 9$			-24.2
	0.4	13.3	11.2	28.7			-16.3
	0.6	a	a	<u>a</u>			-11
(1b	0р	13.7	15.0	16.7	5.1	15	0
	0.2	13.6	15.8	16.3			42.1
	0.4	13.8	17.1	15.6			81.5
	0.8	13.8	18.5	13 ·8			151.5
(1 c)	0	13.2	10.0	$23 \cdot 3$	5.31	5.20	-6.6
	0.2	13.3	14.7	17.7			39.1
	0.45	13.7	16.3	16.0			$103 \cdot 5$
	0.66	13.7a,c	a	14.6ª			143
	0.83	13.7a.c	a	13·7ª			182

TABLE.	Chemical sha	ifts and	coupling	constants in	CDCl.
TUDDE.	Onemical shi	gis ana	conpring	consums in	CDC13

^a Obscured by phenyl protons. ^b A small amount of Eu(fod)_a was added to determine J's. ^c Estimated. ^d JAB was assumed to be 13.7 Hz.

 CCl_4 , eq-P=O) and the constancy of the ${}^{3}J_{HP}$ values even at -60° . Eu(fod)₃ addition shifts the equilibrium to the (2b; X = OPh) side.[‡] Increase of (2b) should result in an averaging of ${}^{3}J_{HP}$ and a greater downfield shift of the axial proton H_B than for H_A . This is found to be the case. Equatorial co-ordination would not be expected to show such a large $\Delta \delta_{AB}$.

General trends are followed with (1a, $v_{P=0}$ 1306 cm⁻¹) but the equilibrium appears not to be seriously perturbed,

Saturated seven-membered-ring phosphates undergo pseudo-rotation between twist-boat forms, as indicated by the time-averaged coupling constants found for 2-methoxy-(b.p. 92–93.5°/0.5 mm, J_{AB} 12.0, J_{AP} 16.8, J_{BP} 16.2 Hz) and 2-phenoxy-1,3,2-dioxaphosphepan 2-oxides (b.p. 146- $148^{\circ}/0.2$ mm, J_{AB} 11.9, J_{AP} 16.5, J_{BP} 16.8 Hz).

(Received, 13th April 1973; Com. 528.)

 \ddagger An equilibrium point is determined by the equatorial preference of the P=O group and the steric effects of a substituent on phosphorus. The geometrical preference of P=O appears to be lost by complexation with the Eu reagent, which modifies the nature of P=O bonding.

§ In support of the axial phosphoryl preference on $Eu(fod)_a$ addition, a constant value for ${}^{3}J_{\rm HP}$ was reported for a six-memberedring phosphonate in which the phosphoryl group is axially oriented in the stable form (K.C. Yee and W. G. Bentrude, Tetrahedron Letters, 1971, 2775).

¹ B. L. Shapiro, M. D. Johnston, jun., and R. L. R. Towns, J. Amer. Chem. Soc., 1972, 94, 4381; T. B. Patrick and P. H. Patrick ibid., p. 6230.

² R. K. Fraser and Y. Y. Wigfield, Chem. Comm., 1970, 1471; J. F. Caputo and A. R. Martin, Tetrahedron Letters, 1971, 4547;
 W. G. Bentrude, H. -H. Tan, and K. C. Yee, J. Amer. Chem. Soc., 1972, 94, 3264.
 ³ N. L. Allinger and J. T. Sprague, J. Amer. Chem. Soc., 1972, 94, 5734; E. S. Glazer, R. Knorr, C. Ganter, and J. D. Roberts, *ibid.*,

p. 6026. ⁴ M. Kainosho and A. Nakamura, Tetrahedron, 1969, 25, 4071; D. W. White and J. G. Verkade, J. Magn. Resonance, 1970, 3, 111.