Kinetics of the Gas-phase Reaction between Iodine and Trimethylsilane and the Bond Dissociation Energy $D(Me_3Si-H)^{\dagger}$

By ROBIN WALSH* and MISS J. M. WELLS

(Department of Chemistry, The University of Reading, Whiteknights, Reading RG6 2AD)

Summary The kinetics of the title reaction support an iodine atom abstraction mechanism and a value of $D(\text{Me}_{a}\text{Si-H})$ considerably higher than previous estimates.

BENSON and co-workers¹ have used gas phase kinetic studies of the reactions of iodine and organic species to obtain reliable (C-H) bond dissociation energies. For X other than a first row element the data on X-H bond strengths is sparse² and many values are subject to uncertainty. For $X \equiv Si$ most bond strengths are based on $D(Me_3Si-H) = 340 \text{ kJ mol}^{-1}$, a value obtained by Davidson from studies³ of the pyrolysis of Me_3SiH .

We have investigated the reaction of iodine with Me_3SiH in the gas phase at 546 K using a spectrophotometric analytical technique. U.v. measurements throughout the course of the reaction indicate the formation of both Me_3SiI and HI in approximately equal quantities. Gas chromatographic analysis of product samples showed that, apart from HI, only Me_3SiI and its hydrolysis products were present. In particular, MeI, CH_4 , and H_2 were all shown to be absent (less than a few per cent). The reaction occurred with a negligible pressure change. In a conditioned quartz vessel kinetic studies of iodine disappearance showed the reaction to obey equation (1) up to about 50% conversion

$$\frac{-\mathrm{d}[\mathbf{I}_2]}{\mathrm{d}t} = k[\mathbf{I}_2]^{\frac{1}{2}}[\mathrm{Me}_3\mathrm{SiH}] \tag{1}$$

after which a slight inhibition (hardly greater than experimental error) was evident. The data gave, at 546 K, $k = (2.0 \pm 0.2) \times 10^5 \,\mathrm{Torr}^{-\frac{1}{2}} \,\mathrm{s}^{-1}$.

The results suggest the mechanism shown in (i), (ii), and (iii). Assuming the rate of step (2) is negligible compared

$$\mathbf{I}_2 (+\mathbf{M}) \rightleftharpoons 2\mathbf{I} (+\mathbf{M}) \tag{i}$$

$$I + Me_{3}SiH \rightleftharpoons Me_{3}Si \cdot + HI$$
(ii)

$$\begin{array}{c} 3\\ \mathrm{Me_3Si}\cdot +\mathrm{I_2} \!\rightarrow \!\mathrm{Me_3SiI} +\mathrm{I}\cdot \end{array} \tag{iii}$$

† First reported at a meeting of the Gas Kinetics Discussion Group of the Chemical Society at Leicester, September 25th, 1972.

with (3) in the early stages, then $k = k_1 K_{1_0}^{\dagger}$, which from the known value of $K_{1_2}^{\frac{1}{2}}$ yields $k_1 = 9.6 \times 10^2 \,\mathrm{l}\,\mathrm{mol}^{-1}\,\mathrm{s}^{-1}$. The Arrhenius parameters of k_1 have not yet been determined, but we expect by analogy with hydrocarbon chemistry¹ A_1 is ca. 10^{10.9} m⁻¹ s⁻¹, in which case $E_1 = 83$ kJ mol⁻¹. E_2 is not known but is likely to be smaller than the activation energy of the analogous reaction of $Me_3C \cdot (5 \text{ kJ mol}^{-1})$. If $E_2 = 5 \text{ kJ mol}^{-1}$, $\Delta H_{1\cdot 2}^0 = 78 \text{ kJ mol}^{-1}$ and assuming a negligible effect of temperature this implies D(Me₃Si-H, 298 K) = $D(H-I) + 78 = 376 \text{ kJ mol}^{-1}$ (90 kcal mol⁻¹). This value, although subject to the uncertainty of the assumptions stated, is considerably higher than the previous figure.³ It implies that, in the pyrolyses of both Me₃SiH³ and Me₃Si·SiMe₃,⁴ in contrast to previous suggestions, short chains occur and these lower the overall activation energies below those of the initiation steps. Α very recent reinvestigation on the latter pyrolysis⁵ bears this out. This value of the bond strength also helps to remove an apparent anomaly⁶ in relative rates of hydrogen abstraction from Me₃SiH⁷ and SiH₄ by methyl radicals.^{7,8} The activation energies for these abstractions differ by only 4 kJ mol⁻¹, a figure more easily reconciled with a bond strength difference of 21 kJ mol⁻¹ from the new figures, rather than 59 kJ mol^{-1} from the old.

Measurements of X-H bond strengths for compounds containing other elements are planned.

We thank the S.R.C. for financial support and for a research studentship (J.M.W.).

(Received, 17th May 1973; Com. 697.)

¹ D. M. Golden and S. W. Benson, Chem. Rev., 1969, 69, 125.

- ² For a recent review see K. W. Egger and A. T. Cocks, Helv. Chim. Acta, in the press.
- ³ I. M. T. Davidson and C. A. Lambert, J. Chem. Soc. (A), 1971, 882. See also I. M. T. Davidson, Quart. Rev., 1971, 25, 111. ⁴ I. M. T. Davidson and I. L. Stephenson, J. Chem. Soc. (A), 1968, 282.

- ⁵ I. M. T. Davidson and A. V. Howard, Gas Kinetics Discussion Group Meeting, Cardiff, April 5th 1973. ⁶ E. Whittle, 'Chemical Kinetics,' M. T. P. International Review of Science, Physical Chemistry, Ser. 1, 9, ed. J. C. Polanyi, 1972, p. 75.
 ⁷ E. R. Morris and J. C. J. Thynne, J. Phys. Chem., 1969, 73, 3294.
 ⁸ O. P. Strausz, E. Jacubowski, H. S. Sandhu, and H. E. Cumming, J. Chem. Phys., 1969, 51, 552.