Hydrolysis Products of Everninomicin B

By Ashit K. GANGULY* and ANIL K. SAKSENA

(Chemical Research Department, Schering Corporation, Bloomfield, New Jersey 07003)

Summary Hydrolysis of everninomicin B yields a mixture from which a heptasaccharide, everheptose B, has been isolated; everheptose B contains a new sugar, p-evalose, the structure and absolute stereochemistry of which has been established.

EVERNINOMICINS are oligosaccharide antibiotics produced by *Micromonospora carbonaceae*¹ We report here the and (4) were identified on the basis of their interconversion and comparison with authentic samples.²

Evertetrose B (5) is a non-reducing crystalline solid, m.p. $276-277^{\circ}$; $[\alpha]_{\rm D} - 46\cdot3^{\circ}$ (H₂O). It has no selective u.v. absorption, and its i.r. spectrum does not show carbonyl absorption. Its n.m.r. spectrum shows the presence of four methoxy-groups, and one tertiary and two secondary methyl groups. Of the four anomeric proton signals,

results of some degradation experiments on everninomicin B.

Everninomicin B on aqueous hydrolysis gave a crystalline heptasaccharide named everheptose B (1), † m.p. 135–137°; $[\alpha]_D - 68^\circ$ (CHCl₃); ν_{max} . 1538 (NO₂) and 1730 (CO) cm⁻¹. As in the case of everheptose (2)² the carbonyl absorption was stronger than the nitro-absorption. Treatment of everheptose B with ethereal diazomethane gave the fragments (3) and (4) and evertetrose B (5). Compounds (3) which appear at δ (pyridine) 4.7 (d, J 7 Hz), 5.19 (s, $W_{\frac{1}{2}}$ 2.5 Hz), 5.68 (d, J 2 Hz), and 5.45 (s, $W_{\frac{1}{2}}$ 2.5 Hz), all but the last have been assigned to the evertriose³ portion of the molecule. Aqueous hydrolysis of (5) under controlled conditions gave evertriose (7)³ and a new sugar, named D-evalose (8).

Exhaustive methylation⁴ of evertetrose-B (5) and prolonged aqueous hydrolysis of the product (6) gave a mixture

† Satisfactory elemental analyses were obtained for all new compounds.

from which 2,3,4-tri-O-methyl-D-evalose (9) and 2-O-methyl-D-curacose $(10)^4$ were isolated by preparative t.l.c. This established that in (5), D-evalose (8) is linked through its anomeric oxygen atom to C-3 of D-curacose (11).

D-Evalose (8) was obtained as a colourless glass, $[\alpha]_D$ – $4.7 \rightarrow -5.2^{\circ}$ (24 h; H₂O). Its n.m.r. spectrum showed a secondary methyl doublet, a tertiary methyl singlet, and no methoxy-signals. On methylation and partial hydrolysis

it formed the tri-O-methyl-ether (9), m.p. 115-120°; $[\alpha]_{D} + 18.3 \rightarrow + 6.3^{\circ}$ (24 h; MeOH). The n.m.r. spectrum of (9) (anomeric mixture) shows the presence of three methoxy-groups [δ (CDCl₃) 3·29, 3·51, and 3·54], a secondary methyl group [δ 1.29 (d, J 6.5 Hz)], and a tertiary methyl group (δ 1.37). A one-proton doublet at δ 3.08 (J 9 Hz, H-4) corresponds to the major anomer. The stereochemistry at C-2 (axial OMe) follows from the coupling constants of the anomeric protons [δ 4.78br (s, $W_{\frac{1}{2}}$ 3 Hz) and 5.26 (d, J 2.5 Hz)]. The above evidence establishes that (9) and L-nogalose $(12)^{6+}$ have the same constitution and relative stereochemistry at C-2, C-4, and C-5. A direct comparison with an authentic sample of L-nogalose (i.r., n.m.r., t.l.c.) established the identity of the two compounds.

The absolute stereochemistry of L-nogalose (12) has been unequivocally established by X-ray crystallography.6 The trio-O-methyl-ether (9) must therefore be D-nogalose. This was confirmed as follows. Jones oxidation of compound (9) followed by β -elimination yielded (13), $[\theta]_{255}$ + 3639°; similarly L-nogalose gave $(14),^{6}$ $[\theta]_{255} - 4292^{\circ}$. Although (13) and (14) showed equal but opposite Cotton effects, the sign in each case was exactly the opposite of the expected value⁷ for simpler $\alpha\beta$ -unsaturated δ -lactones. This difference may be attributed to the presence of the enol ether chromophore. Some steroidal α -diketones⁸ have also been reported to have abnormal c.d. The stereochemistry of the anomeric linkage of D-evalose in evertetrose B (5) was deduced as β -equatorial by application of Klyne's rule⁵ and from the n.m.r. spectrum [δ 5.45 (s, $W_{\frac{1}{2}}$ 2.5 Hz; anomeric proton of D-evalose)]. The mass spectrum of (6) was also consistent with the assigned structure.

The linkage between the units (4) and (5) in everheptose B has been established from the results of experiments similar to those described for everheptose (2),² and will be described in the full paper.

We thank Dr. P. F. Wiley, Upjohn Company, U.S.A., for a sample of L-nogalose.

(Received, 25th April 1973; Com. 593.)

 \ddagger L-Nogalose,⁶ m.p. 115—121°; [α]_D − 17·1 → − 5·1° (24 h; MeOH).

¹ G. H. Wagman, G. M. Luedemann, and M. J. Weinstein, Antimicrob. Ag. Chemother., 1964, 33. ² A. K. Ganguly, O. Z. Sarre, D. Greeves, and J. Morton, J. Amer. Chem. Soc., 1973, 95, 942.

⁸ A. K. Ganguly and O. Z. Sarre, Chem. Comm., 1970, 911.

- ⁴ A. K. Ganguly, O. Z. Sarre, and S. Szmulewicz, Chem. Comm., 1971, 746.

⁵ W. Klyne, Biochem. J., 1950, 50, xli.
⁶ P. F. Wiley, D. J. Duchamp, V. Hsiung, and C. C. Chidester, J. Org. Chem., 1971, 36, 2670; P. F. Wiley, F. A. MacKellar, E. L. Caron, and R. B. Kelly, Tetrahedron Letters, 1968, 663.

⁷ R. Bucourt, M. Legrand, M. Vignan, J. Tessier, and V. Delaroff, Compt. rend., 1963, 257, 2679; D. Arigoni, W. Von Dachne, W. O. Godtfredsen, A. Melera, and S. Vangedal, Experientia, 1964, 20, 344.
⁸ C. Djerassi and R. Ehrlich, J. Amer. Chem. Soc., 1956, 78, 440; C. Djerassi and W. Closson, ibid., p. 3761; M. Legrand, A. Lacam, and R. Viennet, Bull. Soc. chim. France, 1961, 792; L. Velluz and M. Legrand, Angew. Chem., 1961, 73, 603.