551

## Revised Structures for Cytochalasins E and F

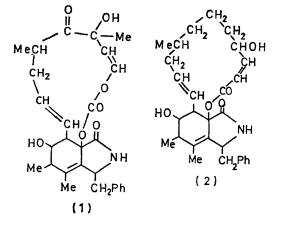
By DAVID C. ALDRIDGE, DAVID GREATBANKS, and W. BRIAN TURNER\*

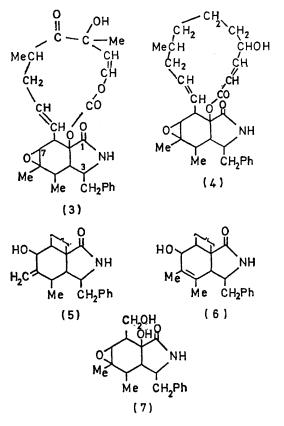
(Imperial Chemical Industries Ltd., Pharmaceutical Division, P.O Box 25, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG)

Summary The structures of cytochalasins E and, by analogy, F are revised to (3) and (4) respectively.

CYTOCHALASINS E and F have been assigned structures (1) and (2) respectively.<sup>1</sup> We now report evidence which requires modification of their structures to (3) and (4).

The <sup>13</sup>C-n.m.r. spectrum of cytochalasin E shows signals due to only thirteen  $sp^2$  carbon atoms in the range  $\delta$  (Me<sub>4</sub>Si) 122—213 whereas structure (1) possesses fifteen such atoms. On the other hand the spectra of the isomeric compounds (5) and (6) formed by mild acid treatment of cytochalasin E<sup>1</sup> show the expected fifteen  $sp^2$  carbon atoms, so that a new


J.C.S. CHEM. COMM., 1973


double bond has been formed in the acid catalysed rearrangement and cytochalasin E must possess one more ring than structure (1).

Ozonolysis of cytochalasin E and reduction of the ozonide with sodium borohydride<sup>2</sup> gave compound (7), whose structure was clear from its <sup>1</sup>H n.m.r. spectrum. In particular it shows the presence of only two hydroxy-protons and a doublet (J 5 Hz) at  $\delta 2.68$ , a chemical shift characteristic of a proton on an epoxide ring.

Structure (3) for cytochalasin E readily accounts for the formation of the isomers (5) and (6), and is supported by the fact that cytochalasin E fails to form an acetate under conditions which readily acetylate the 7-hydroxy-group of cytochalasins A, B, C, and D. Structure (4) for cytochalasin F follows from the similarity of its <sup>1</sup>H n.m.r. spectrum to that of cytochalasin  $E_1^1$  its similar behaviour towards acid,<sup>1</sup> and the fact that it only forms a mono-acetate.

The earlier structures of cytochalasins E and F were based on the incorrect assignment of a signal at  $\delta ca$ . 3.7 to





H-7, which gives a signal of 3.85 in cytochalasins A and B.<sup>3</sup> This signal is in fact due to H-3, which appears at lower field in the spectra of cytochalasins E and F than in those of cytochalasins A, B, C, and D.

(Received, 25th April 1973; Com. 574.)

- <sup>1</sup> D. C. Aldridge, B. F. Burrows, and W. B. Turner, J.C.S. Chem. Comm., 1972, 148.
- <sup>2</sup> W. Rothweiler and Ch. Tamm, *Helv. Chim. Acta*, 1970, 53, 696.
- <sup>3</sup> D. C. Aldridge, J. J. Armstrong, R. N. Speake, and W. B. Turner, J. Chem. Soc. (C), 1967, 1667.