Evidence for a Dissociative Mechanism in the Reaction of a Five-co-ordinate Nickel(II) Complex

By DWIGHT A. SWEIGART* and PATRICIA HEIDTMANN

(Department of Chemistry, Swarthmore College, Swarthmore, Pennsylvania, 19081)

Summary Bis(diethyldithiophosphato)nickel(II) reacts with tributylphosphine to form a stable diamagnetic five-co-ordinate adduct; replacement of the tributylphosphine with bidentate ligands in benzene proceeds *via* a dissociative mechanism.

Zink *et al.*¹ recently reported that the square planar complex bis(diethyldithiophosphato)nickel(II) [Ni(dtp)₂, dtp = (EtO)₂PS₂⁻] forms a 1:1 adduct with triphenylphosphine. This adduct is, however, very unstable ($K_{\rm f} = ca.$ 1 M⁻¹). We found that the addition of PBu₃ to a solution of Ni(dtp)₂ in benzene causes a deep purple colour to develop instantly, $\lambda_{\rm max} = 554$ nm ($\epsilon = 400$). A Job's continuous variations study clearly shows that a 1:1 complex is formed. The adduct is quite stable, $K_{\rm f} = 10^4$ M⁻¹ at 25°C in benzene. Tributyl phosphite also forms a 1:1 adduct with Ni(dtp)₂, $K_{\rm f} = ca.$ 40 M⁻¹. In contrast to the reported PPh₃ adduct the PBu₃ complex is low spin, having $\chi_{\rm m} = ca.$ 500 × 10⁻⁶ cgs at room temperature in solution. This small positive susceptibility compares favourably with values found for other low-spin five-co-ordinate complexes.² Preparation of the adduct in benzene followed by evaporation of the solvent results in a rather stable purple oil which is essentially diamagnetic and yields an electronic spectrum identical to that of a solution freshly prepared from $Ni(dtp)_{3}$ and PBu_{3} .

The electronic spectrum consists simply of a broad band centred at 554 nm. This supports^{2,3} the expected square pyramidal structure with the visible band being due to:

$${}^{1}E \longleftarrow {}^{1}A_{1} (d_{x^{2}-y^{2}} \longleftarrow d_{xz}, yz).$$

The kinetics of the replacement of the PBu₃ group by bipyridine (bipy), 1,10-phenanthroline (phen), 1,2-bis-(diphenylphosphino)ethane (diphos), and cis-1,2-bis(diphenylphosphino)ethylene (VPP) was followed at 25°C in benzene with a Durrum stopped-flow apparatus. Pseudofirst order conditions were used. The initial rapid reaction is the replacement of PBu₃ yielding six-co-ordinate adducts.⁴ This is followed by a much slower replacement of the dtp groups yielding a dtp⁻ salt which precipitates from solution.

LITTLE quantitative information is available regarding the mechanism of ligand substitution at five co-ordinate centres.

J.C.S. CHEM. COMM., 1973

We found that plots of k_{obs} vs. concentration of nucleophile in general showed pronounced curvature (Table) with all k_{obs} values tending towards the same limit regardless of the nucleophile. The addition of excess PBu₃ to the solution lowered the k_{obs} values but did not affect the limit. Over the initial linear portions of the plots we found k_{obs} $\propto 1/[PBu_3]$ for a fixed nucleophile concentration. Frequently with no excess PBu_a present the reactions showed deviation from good first-order kinetics. This simply indicates that the nucleophile and PBu₃ are competing for some intermediate. We propose the following mechanism:

$$\begin{split} \operatorname{Ni}(\mathrm{dtp})_{2}\operatorname{PBu}_{3} &\rightleftharpoons \atop k_{2} \operatorname{Ni}(\mathrm{dtp})_{2} + \operatorname{PBu}_{3} \\ & k_{2} \end{split}$$
$$\operatorname{Ni}(\mathrm{dtp})_{2} + \operatorname{L-L} & \rightleftharpoons \atop \atop k_{4} \operatorname{Ni}(\mathrm{dtp})_{2} - \operatorname{L-L} & \xrightarrow{k_{5}} \operatorname{Ni}(\mathrm{dtp})_{2}(\operatorname{L-L}) \end{split}$$

Using the steady state approximation for Ni(dtp)₂ and Ni-(dtp)₂-L-L, the mechanism yields equation (1) which predicts a limiting rate constant of k_1 . This limit is, of

$$k_{\rm obs} = \frac{k_1 k_3 k_5 [\rm L-L]}{k_2 [\rm PBu_3](k_4 + k_5) + k_3 k_5 [\rm L-L]}$$
(1)

course, independent of nucleophile and is $225 \pm 50 \text{ s}^{-1}$. The mechanism predicts that $k_{obs} \propto 1/[PBu_3]$ when k_{obs} is linear in [L-L] and this was observed. We found that the relative reactivities are diphos > VPP >> phen > bipy. Diphos is so reactive that the [PBu₃] dependence is small unless a huge excess is present. With no excess $PBu_3 k_{obs}$ is independent of [diphos] and is simply equal to k_1 . Plots of $1/k_{obs}$ vs. 1/[L-L] were linear as required by equation (1) all yielding the same intercept $(1/k_1)$ regardless of the amount of excess PBu₃ present. The slopes of such plots simply indicate the probability that the intermediate will return to react or go on to product.

Nucleophile, L	k _{obs} /s ⁻¹	Range of [L]/ M $ imes$ 10 ³
diphos ^b VPP ^b bipy ^c phen ^c	$\begin{array}{l} 275[L]/([L]+0.76\times10^{-3})\\ 230[L]/([L]+23\times10^{-3})\\ 200[L]/([L]+1200\times10^{-3})\\ 295[L] \end{array}$	$2-20 \\ 2-20 \\ 10-300 \\ 5-50$

^a Benzene, 25 °C. [Ni(dtp)PBu₃] is 2×10^{-4} to 5×10^{-4} M. ^b Excess PBu₃ = $2 \cdot 5 \times 10^{-3}$ M' ^c Excess PBu₃ = $5 \cdot 3 \times 10^{-3}$ M.

It is easy to show that an associative pathway is not important in these reactions. Regardless of the details of the reaction sequence, an associative mechanism would not yield a limiting rate constant independent of either the nucleophile or PBu₃ concentration.⁵ Since an associative pathway cannot contribute at high nucleophile concentrations, it is unimportant at any concentration.

Although this initial study clearly shows a dissociative mechanism for substitution at a five-co-ordinate centre, we do not believe this will be the general case. Indeed it has already been suggested that this is not the case.⁵ In addition we have found⁵ in this laboratory that the substitution reactions of the five-co-ordinate dithiolene complexes $M(S_2C_2{\rm Ph}_2)_2{\rm PR}_3$ and $M[S_2C_2(CN)_2]_2{\rm PR}_3^-$ (M = Co, Fe) definitely do not follow the dissociative mechanism found for Ni(dtp)₂PBu₃.

In the case of nickel(II) we suspect that low-spin square pyramidal complexes will substitute via a dissociative pathway because a $S_{\rm N}2$ mechanism requires an initial spin change in the reaction sequence. However, high-spin square pyramidal nickel(II) does not have this problem and we look for associative pathways to appear. The argument that 18 electron systems will react via S_N1 mechanisms in our view will apply only to low-spin systems because, for example, many stable high-spin 20 electron systems are known---octahedral nickel(II).

(Received, 25th April 1973; Com. 585.)

¹ N. Yoon, M. J. Incorvia, and J. I. Zink, J.C.S. Chem. Comm., 1972, 499.

- ² C. A. McAuliffe and D. W. Meek, *Inorg. Chem.*, 1969, 8, 904; B. R. Cook, C. A. McAuliffe and D. W. Meek, *ibid.*, 1971, 10, 2676.
 ³ J. R. Preer and H. B. Gray, *J. Amer. Chem. Soc.*, 1970, 92, 7306; J. R. Ferraro, D. W. Meek, E. C. Sirviec, and A.Quattrochi, *ibid.*, 1971, 93, 3862; C. Furlani, *Co-ord. Chem. Rev.*, 1968, 3, 141.
 ⁴ S. E. Livingstone and A. E. Mihkelson, *Inorg. Chem.*, 1970, 9, 2545.

- ⁵ D. A. Sweigart and D. G. DeWit, Inorg. Chem., 1970, 9, 1582; D. A. Sweigart, to be published.