
Generation and Reaction of 2,4-Dienolate Ions from Δ^4 -3-Keto-steroids with Lithium Hexamethyldisilazane

By MASATO TANABE* and DAVID F. CROWE (Stanford Research Institute, Menlo Park, California 94025)

Summary Reaction of Δ^4 -3-keto-steroids with lithium hexamethyldisilazane yields 2,4-dienolate ions which can be methylated at C-2 or trapped as 2,4-dienolsilyl ethers.

PROLONGED reaction of Δ^4 -3-keto-steroids with potassium t-butoxide in t-butyl alcohol and methyl iodide yields, through alkylation of the thermodynamically more stable 3,5-enolate anion, 4,4-dimethyl- Δ^5 -3-keto-steroids.¹ We report on the rapid transformation of the Δ^4 -3-keto-system of testosterone 17-tetrahydropyranyl ether (1) to the kinetically controlled $\Delta^{2,4}$ -homoannular dienolate ion (3) with lithium hexamethyldisilazane² (2) in tetrahydrofuran solution. The ion (3) is an important synthetic intermediate for effecting steroid transformations.

Reaction of (3) with t-butyldimethylchlorosilane³ and subsequent aqueous work-up of an ether-tetrahydrofuran solution gave, in over 90% yield (u.v.), the hitherto unknown ring A homoannular 2,4-dienol silyl ether (4). Analytically pure material was obtained by crystallization from acetone, m.p. 124—128°; λ_{max} (ether) 278 nm (ϵ 3800); λ_{max} (Nujol) 6·0 [C=C(OSiMe_2But)-C=C], 8·0, and 11·8 μ m (Si-C); τ (CDCl₃) 4·73 (4-H), 5·4 (2-H), 9·03 (19-Me), 9·10 (9H, O-Si-CMe₃), 9·23 (18-Me), 9·9 (6H, OSiMe₂). Crystalline (4) can be stored in the cold under an inert atmosphere for extended periods. Mild acidic or basic conditions readily regenerate the parent 3-keto- Δ^4 -system. In contrast, acid-catalysed enol ether formation from Δ^4 -3-ketosteroids yields the thermodynamically more stable 3,5-enol ether.⁴ Alkylation of (3) with methyl iodide in hexamethylphosphoric triamide afforded a 80% conversion (n.m.r., t.l.c.) into a mixture of the 2α - and 2β -methylated epimers. Sodium methoxide catalysed equilibration to the stable 2α -epimer, acid-catalysed removal of the C-17-tetrahydropyranyl (THP) ether, and crystallization from acetonehexane yields directly 2α -methyltestosterone (5), m.p. 155-

157° (lit. 155-157°), which has been previously prepared in a multistep sequence by methylation of the 2-ethoxyoxalate derivatives of testosterone.⁵

In a similar manner, 19-nortestosterone 17-tetrahydropyranyl ether and (2) produced the kinetically controlled 2,4-dienolate ion, which was trapped by silvlation with t-butyldimethylchlorosilane to give the 2,4-silylenol ether (6). The appearance of 2 vinyl protons at $\tau 4.6$ and 5.35 in the n.m.r. spectrum rules out the alternative linearly con jugated homoannular 3,5(10)-dienol silyl ether.

(Received, 22nd May 1973; Com. 708.)

- ¹ R. B. Woodward, A. A. Patchett, D. H. R. Barton, D. A. J. Ives, and R. B. Kelly, *J. Amer. Chem. Soc.*, 1954, 76, 2852.
 ² D. H. R. Barton, R. H. Hesse, G. Tarzia, and M. M. Pechet, *Chem. Comm.*, 1969, 1497; M. Tanabe and D. F. Crowe, *ibid.*, p. 1498; D. H. R. Barton, R. H. Hesse, M. M. Pechet, and C. Wiltshire, *ibid.*, 1972, 1017.
 ³ E. J. Corey and A. Venkateswarlu, *J. Amer. Chem. Soc.*, 1972, 94, 6190; G. Stork and P. F. Hudrlik, *ibid.*, 1968, 90, 4462.
 ⁴ J. F. W. Keana in 'Steroid Reactions,' ed. C. Djerassi, Holden-Day, San Francisco, 1963, pp. 42-43.

 - ⁵ H. J. Ringold, E. Batres, O. Halpern, and E. Necoechea, J. Amer. Chem. Soc., 1959, 81, 427.