Chlorosulphonylisocyanate Addition to Anils: Formation of Triazinediones

By RALPH E. WALROND and HANS SUSCHITZKY*

(Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, Lancashire)

Summary The azomethine bond undergoes thermal (2+4) cycloaddition with 2 molecules of chlorosulphonylisocyanate to give s-triazinediones (1) in high yield.

CYCLOADDITION of chlorosulphonylisocyanate (CSI) with carbon–carbon multiple bonds is a well documented reaction of synthetic significance, which proceeds almost invariably in a (2+2) manner. Interaction of CSI with a C=N- bond, however, has only been reported recently in the case of a ketenimine (>C=C=N-) which gave an unstable diazinone.

As part of a general study of the reaction of CSI with >C=N- groups we found that solutions of anils in methylene chloride react at room temperature with 2 mol of CSI to give the novel N-chlorosulphonyl-s-triazinediones (1; $R^3 = SO_2Cl$) in high yield (cf. Table). These compounds are stable for several days even on exposure to air and light and are reductively converted (at pH 7-8 in NaHSO3) into the corresponding s-triazinediones (1; $R^3 = H$; cf. Table). The structures are confirmed by analytical and spectral evidence. For instance, compound (1a) $(R^1 = R^2 = Ph)$, $R^3 = SO_2Cl$) shows bands at 1770 and 1790 (>C=O) and at 1200 and 1370 cm⁻¹ (SO₂). The n.m.r. spectrum shows peaks at $\tau 2.45$ (1OH), and at 2.95 (1H). A peak of m/e 365 (corresponding to M^+ – SO₂Cl) was observed. On reduction of compound (1; $R^1 = R^2 = Ph$, $R^3 = H$) coupling between NH and the adjacent >CH appears which is

suppressed by deuterium oxide addition. M.s. data clearly showed a molecular ion peak. All other compounds were similarly identified. Only in the case of a p-NO $_{\mathbf{r}}$ -group (1g) did the method fail, possibly because of deactivation of the anil towards cycloaddition.

TABLE. Triazinediones (1) from CSI and Schiff's bases

			$R^3 = SO_2Cl$		$R^3 = H$	
	\mathbb{R}^{1}	\mathbb{R}^2	% yield	m.p. (°C)	% yield	m.p. (°C)
a	$\mathbf{P}\mathbf{h}$	Ph	100	95	95	256
b	p-MeOC ₆ H ₄	\mathbf{Ph}	86	140		250
c	p-ClC _a H _a	\mathbf{Ph}	73	110	60	270
d	p-NO ₂ C ₆ H ₄	$\mathbf{P}\mathbf{h}$	50	140	40	248
e	Ph	$p\text{-MeOC}_6H_4$	50	104	95	256
f	Ph	p-ClC ₆ H ₄	60	122	80	260
g	\mathbf{Ph}	$p\text{-NO}_2C_6H_4$	0			
h	\mathbf{Ph}	m-NO ₆ C ₆ H ₄	78	145	95	260
i	Ph	o-ClC ₆ H ₄	50	110	90	192
j	\mathbf{Ph}	$PhCH_2$	60	120	60	260
k	${ m Ph}$	C_6H_{11}	65	110	65	280

^a All new compounds had the expected analytical and spectral data.

The full scope of this (2+4) cycloaddition involving a C=N- moiety which may, however, be preceded by a (2+2) cycloaddition in which a dipolar intermediate is formed from the anil and the reagent (CSI), is being studied.

One extension involves azines $(RCH=N-)_2$ which predictably reacted with CSI to give the triazoles (2; R=Ph or $MeOC_6H_4$) analogous to the reported interaction with arylisocyanates.³

We thank the S.R.C. for a CAPS award (to R.E.W.) and Dr. R. Hull of I.C.I. Pharmaceuticals Limited for his interest and stimulating discussion.

(Received, 8th June 1973; Com. 822.)

¹ R. Graf, Angew. Chem. Internat. Edn., 1968, 172; H. Bestian, 'Cycloaddition Reactions,' I.U.P.A.C., Butterworth, London, 1971, p. 611.

² Naser-Ud-Din, J. Riegl, and L. Skattebøl, J.C.S. Chem. Comm., 1973, 271.

³ J. R. Bailey and A. T. McPherson, J. Amer. Chem. Soc., 1917, 39, 1322.