Conformational Behaviour of Di-o-thymotide and Di-o-carvocrotide

By W. DAVID OLLIS* and J. FRASER STODDART (Department of Chemistry, The University, Sheffield S3 7HF)

Summary The temperature-dependent ¹H n.m.r. spectra of suitably substituted disalicylides [(3) and (4)], related lactones [(8) and (9)], and bislactams [(10) and (11)], demonstrate their ring inversion ($B \rightleftharpoons B^*$) between enantiomeric boat conformations.

EARLIER studies¹⁻³ have disposed of the alleged existence of isomeric α - and β -disalicylides as conformational diastereomers of the Chair[†] and Boat[†] types:⁴ the α -disalicylides are dimers whereas the β -compounds are, in fact, trimers. The disalicylides were shown by dipole moment measurements⁵ to exist in the Boat[†] conformation⁴ with two *cis*ester linkages whereas the trisalicylides can adopt⁶ propeller

and helical conformations, each with three *trans*-ester linkages. The impression has been given^{1-4,6} that the resonance demand of two planar ester groups in the *cis*-disalicylides is such that ring inversion would be a relatively slow process compared with the conformational changes

which occur⁶ in the trisalicylides. Further investigation of this impression was encouraged by the results on 5,6,11,12-tetrahydrodibenzo[*a,e*]cyclo-octene (1). X-Ray crystallography has indicated⁷ that this hydrocarbon (1) adopts the centrosymmetric (C_{2h}) Chair[†] conformation in the solid state whereas ¹H n.m.r. studies have shown⁴ that Chair[†] and Boat[†] conformations are approximately equally populated in solution. Examination of the temperature-dependent ¹H n.m.r. spectra of the suitably substituted disalicylides (3) and (4) shows that inversion is detectable.

The temperature dependence of the methyl signals for the isopropyl groups (Table) of di-o-thymotide² (3) and di-o-carvocrotide³ (4) is ascribed to ring inversions between chiral B conformations⁴ (5) and their enantiomers (B*). During the conformational itinerary (Figure), involving

only torsional changes, the folded boat conformations, [FB1 (6) and FB2 (7), and their enantiomers (FB1* and FB2*) are the most probable transition states for ring inversion $(B \rightleftharpoons B^*)$. The stereoelectronic characteristics of the folded boat conformations will be discussed in detail later. They involve three principal factors: (i) steric interactions $[x, \sec (6); y, \sec (7)]$, (ii) diminished conjugation associated with the non-planar ester groups, and (iii) opposing contributions from $p-\pi$ conjugative interactions of the ester oxygen atoms, and from $\pi-\pi$ conjugative interactions of the carbonyl groups, with the aromatic rings. The relative magnitudes of the free energies of activation (Table) for

CH₂Ph

[†] The description 'Chair' is non-specific and refers to both of the enantiomeric conformations (C and C*) of the rigid chair type. Similarly, the description 'Boat' refers to any conformation of the flexible boat family. The descriptions B, B*, TB, TB*, FB1, FB1*, FB2, and FB2* used later in the Communication are specific (cf. ref. 4).

di-o-thymotide [(3), ΔG^{\ddagger} 17.7 kcal mol⁻¹] and di-o-carvocrotide [(4) ΔG^{\ddagger} 18.4 kcal mol⁻¹] support the view that the FB2 and FB2* conformations are more likely to be the rate-determining transition states for $B \rightleftharpoons B^*$ inversion. This conclusion is based on the expectation that the steric

The lactones $(8)^9$ and $(9)^{10}$ have given results (Table) compatible with relatively low energy $B \rightleftharpoons B^*$ inversion processes. In contrast, the isomeric bislactams (10) and (11) showed no change in their ¹H n.m.r. spectra up to $+180^{\circ}$ in accordance with the view that the resonance

Free energies of activation (ΔG) for $D \rightleftharpoons D$, inversion	Free energies	of activation	(ΔG^{\ddagger}) for B	\Rightarrow B* inversion
---	---------------	---------------	-------------------------------	----------------------------

Compound (3)	Solvent CDCl ₃	Prochiral‡ group CHMe ₂	Temp. (°C) +25 +80	Chemical shifts (τ) ⁴ J/Hz 8·84 (A), 8·88 (B), J _{Me,H} 6·9 8·86 (AB), J _{Me,H} 6·9	$\Delta G^{\ddagger}/ ext{kcal mol}^{-1}$ 17·7 \pm 0·2'
(4)	CDCl ₃	CHMe ₂	+25 +96	8·74 (А), 8·92 (В), <i>Ј</i> ме,н 6·9 8·83 (АВ), <i>Ј</i> ме,н 6·9	18.4 ± 0.1 r
(8)	$CDCl_8-CS_2(1:1)$	CH ₂	$-90 \\ +22$	6·35 (A), 7·02 (B), J 11·5° 6·84 (AB)°	ca. 10°
(9)	CDCl ₈ -CS ₂ (3:1)	CH ₂	-60 + 10	5·63 (A), 6·47 (B), J 13·8 6·10 (AB)	10.9 ± 0.2^{f}
(10) ^{<i>a</i>}	(CD ₃) ₂ SO	CH ₂	$\substack{+22\\+180}$	4.77 (A), 5.35 (B), J 15.0 4.90 (A), 5.22 (B), J 15.0	> 27°
(11) ^b	(CD ₃) ₂ SO	CH ₂	$\substack{+22\\+180}$	5·35 (A), 5·96 (B), J 15·0 5·16 (A), 5·71 (B), J 15·0	> 27°
(12)°	$C_6D_5NO_2$	CH ₂	+63	5.83 (A), 6.32 (B), J 14.0°	21·4 ^{c,f}

‡ J. F. Stoddart, in 'MTP International Review of Science, Organic Chemistry,' Series One, ed. W. D. Ollis, Butterworths, London ⁴ M.p. 158—159°. ^b M.p. 208—209°. ^c Ref. 4. ^d With respect to tetramethylsilane as internal standard. Sites are designated

A and B for two site systems; sites that represent two time-averaged signals are designated AB. Strictly speaking this is an example of an ABCD system coalescing to an AA'BB' system. However, the higher temperature spectrum was almost a singlet and the low temperature spectrum was approximately an AB system. Accordingly, it has been treated as an AB system coalescing to a singlet. ¹ By line shape methods. ⁹ At the coalescence temperature by using the approximate equation $k_{coal} = \pi [(v_A - v_B)^2 + \hat{6} \int_{AB} x^2 t^2 / 2^4]$

interaction [y, see (7)] will be slightly greater when $\mathbb{R}^1 =$ Pr^{i} (4) than when $R^{1} = Me$ (3). It follows that the energy barrier for ring inversion of disalicylide (2; $R^1 = H$) will be even lower. It is therefore understandable that attempts to effect its resolution were unsuccessful.8

demands of *cis*-amide linkages are considerably greater than those of cis-ester linkages.

(Received, 30th April 1973; Com. 620.)

¹W. Baker, W. D. Ollis, and T. S. Zealley, J. Chem. Soc., 1951, 201; W. Baker, B. Gilbert, W. D. Ollis, and T. S. Zealley, ibid., p. 209.

- ² W. Baker, B. Gilbert, and W. D. Ollis, J. Chem. Soc., 1952, 1443.
- ³ W. Baker, J. B. Harborne, A. J. Price, and A. Rutt, J. Chem. Soc., 1954, 2042.
- ⁴ R. Crossley, A. P. Downing, M. Nógrádi, A. Braga de Oliveira, W. D. Ollis, and I. O. Sutherland, J.C.S. Perkin I, 1973, 205.
- ⁶ P. G. Edgerley and L. E. Sutton, J. Chem. Soc., 1951, 1069.
 ⁶ A. P. Downing, W. D. Ollis, and I. O. Sutherland, J. Chem. Soc. (B), 1970, 24.
 ⁷ W. Baker, R. Banks, D. R. Lyon, and F. G. Mann, J. Chem. Soc., 1945, 27.

- ⁶ L. Anschütz and R. Neher, Ber., 1944, 77, 634.
 ⁹ W. Baker, W. D. Ollis, and T. S. Zealley, J. Chem. Soc., 1952, 1447.
 ¹⁰ W. Baker, D. E. Clark, W. D. Ollis, and T. S. Zealley, J. Chem. Soc., 1952, 1452.