The Role of Electronic Effects in Determining the Thermodynamic Stabilities of Olefin Complexes of Palladium(II) and Platinum(II)

By Eva M. Ban, Russell P. Hughes, and John Powell* (Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 1A1)

Summary The dominant factor in determining the thermodynamic stability of the metal-olefin bond in p-substituted styrene complexes of palladium(II) has been shown to be the olefin- π to metal-d component of the bond, rather than the metal-d to olefin- π^* component.

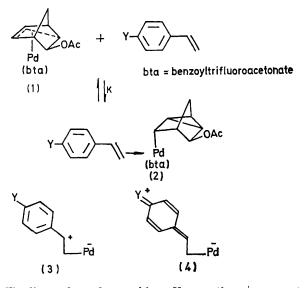

RECENT reviews¹ have concluded that the major factor determining the thermodynamic stabilities of olefin-PtII and $-Pd^{II}$ bonds is the metal- $d \rightarrow olefin-\pi^*$ component of the Dewar-Chatt-Duncanson model. Studies of the effect of polar substituents on the enthalpy of formation of complexes {[CH₂=CH(CH₂)_nQ+R¹R²₂]PtX⁻₃} (R¹, R² = H, alkyl; Q = N, P, As; X = Cl, Br; n = 1, 2² have been interpreted in these terms, even though variations in n, Q, R^1 , and R^2 create a concomitant variation in steric factors close to the olefin-metal co-ordination site. A recent study of bond strengths³ led to the conclusion that the Pd-N bond must have considerably more π -character than the Pd-olefin bond, a result that is unacceptable to the currently held view of metal ligand bonding in these compounds.3 A reassessment of the thermodynamic significance of the metal-d->olefin- π^* component of Pd^{II}-olefin bonds is clearly indicated by the results presented below.

TABLE. Thermodynamic parameters obtained for the equilibrium: complex (1) + p-YC₆H₄CH=CH₂ \rightleftharpoons complex (2) (CDCl₃ solution; 273-312 K).^a

Y	ΔG° (k J mol ⁻¹)	$\Delta H^{\circ} (\mathrm{kJ} \mathrm{mol}^{-1})$	ΔS° (J deg ⁻¹ mol ⁻¹)
NO_2	$3{\cdot}3\pm0{\cdot}4$	-11.7 ± 2	50 ± 4
\mathbf{F}	1.5 ± 0.4	$-26 \cdot 0 \pm 2$	92 ± 4
H	1.0 ± 0.4	$-27{\cdot}8 \stackrel{-}{\pm}2$	96 ± 4
OMe	-1.0 ± 0.4	-33.0 ± 2	105 + 4
NMe_2	-4.5 ± 0.4	$-43\cdot1 \stackrel{-}{\pm} 2$	126 ± 4

^a $[(1)]_{initial} = [p-Y-C_6H_4CH=CH_2]_{initial} = 0.82M$; errorsestimated from reproducibility of data for the equilibrium system with Y = H, varying the concentration range of the styrene from 0.40-1.00M.

¹H n.m.r. studies of the system (6-acetoxynorbornenyl)-Pd(benzoyltrifluoroacetonate) (1) + p-Y-C₆H₄CH=CH₂ \rightleftharpoons $(\pi$ -p-Y-C₆H₄CH=CH₂)(5-acetoxynortricyclenyl)Pd(benzoyltrifluoroacetonate) (2) provide an extremely simple route to values of the equilibrium constant (K).⁴ For this system steric variations at the olefin-metal co-ordination site on changing the styrene substituent (Y) are expected to be negligible. Log₁₀K, at constant temperature (T), exhibits a linear dependence upon the σ_P^+ parameter of Y ($\rho = -0.54$ at 34°). Plots of log₁₀K against 1/T are linear over the temperature range studied (273-312 K). Variations in ΔG° , ΔH° , and ΔS° as a function of Y are presented in the Table. There is a linear relationship between ΔH° and ΔS° .

The linear dependence of $\log_{10} K$ upon the σ_P^+ parameter of Y, rather than the Hammett σ_P value, indicates that resonance effects of Y are of importance in determining the value of K. The olefin- $\pi \rightarrow$ metal-d σ -bonding component must be of predominant importance in determining the thermodynamic stability of the olefin-Pd bond in (2) since the reaction becomes more exothermic as the π -donor ability of Y increases. The observed changes in ΔS° on changing Y indicate an increased solvation requirement for (2) with increasing π -donor capability of Y. Increasing contributions from canonical forms (3) and (4) (*i.e.* Pd closer to the terminal olefinic C atom) as the donor properties of Y increases provides a reasonable rationalization of this feature. Similar proposals provide a rationalization of the ¹³C n.m.r. and i.r. spectra of a series of styrene-Pt^{II} complexes.⁵ Similar trends in ΔH° and ΔS° have long been known for substituted styrene complexes of Ag^{I.6} If metal $d \rightarrow \text{olefin} \pi^*$ back bonding was of prime importance in complexes (2) a reverse trend to that observed would have been anticipated for the ΔH° and ΔG° values.

These results indicate that the π -acceptor properties of olefins have been overemphasised in the interpretation of thermodynamic parameters. Supporting evidence for the dominance of the σ -donor properties of olefins has been recently obtained from ¹³C n.m.r. data,^{5,7} which indicate that the conclusions reached above should be equally applicable to olefin-Pt^{II} bonds since both Pd^{II} and Pt^{II} have comparable electronic requirements in their bonding to σ -carbon,⁷ π -olefinic,⁷,⁸ and π -allylic ligands.⁷

This work was supported by the National Research Council of Canada.

(Received, 17th May 1973; Com. 694.)

- ¹ F. R. Hartley, Chem. Rev., 1973, 73, 163; Angew. Chem. Internat. Edn., 1972, 11, 569.
- ² R. G. Denning, F. R. Hartley, and L. M. Venanzi, J. Chem. Soc. (A), 1967, 324.
- ³ W. Partenheimer, Inorg. Chem., 1972, 11, 743.
- ⁴ R. P. Hughes and J. Powell, J. Organometallic Chem., 1972, 34, C51.
 ⁵ D. G. Cooper, G. K. Hamer, J. Powell, and W. F. Reynolds, J.C.S. Chem. Comm., 1973, 449.
- ⁶ T. Fueno, T. Okuyama, T. Deguchi, and J. Furukawa, J. Amer. Chem. Soc., 1965, 87, 170. ⁷ D. G. Cooper, R. P. Hughes, and J. Powell, J. Amer. Chem. Soc., 1972, 94, 9244.
- ⁸ M. J. Grogan and K. Nakamoto, J. Amer. Chem. Soc., 1968, 90, 918.