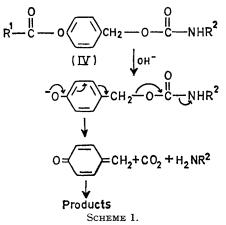
An Alkali-labile Substituted Benzyloxycarbonyl Amino-protecting Group

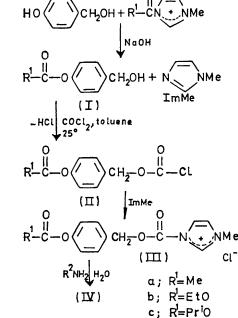

By Michel Wakselman* and Eryka Guibé-Jampel

(Laboratoire de Chimie Organique Biologique, Université de Paris-Sud, Centre d'Orsay, bâtiment 420, 91405 Orsay, France)

Summary 4-Isopropyloxycarbonyloxybenzyloxycarbonyl, Z(4-PriOCO), a new amino-protecting group stable under the conditions which cause cleavage of the t-butoxy-carbonyl and 2-(p-biphenyly)isopropyloxycarbonyl groups, can be removed in a slightly alkaline medium via a 1,6-elimination, by hydrogenolysis, or by HBr in acetic acid.

THE amino-protecting groups generally used in peptide synthesis are acid-labile. There has been a search for alkali-labile amino-protecting groups which can be removed selectively in the presence of the acid-labile groups. Carpino and Han¹ and Wünsch and Spangenberg² have used the 9-fluorenylmethoxycarbonyl and cyano-t-butoxycarbonyl groups which can be cleaved by base *via* a β -elimination reaction.

ct-


We set out to synthesise a substituted benzyloxycarbonyl group from which the amine could be regenerated by alkali via a 1,6-elimination mechanism involving a quinonemethide³ intermediate (Scheme 1). We prepared a series of crystalline glycine carbamates [(IVa; $R^1 = Me$) m.p. 91—92°, 50% yield; (IVb; R = EtO) m.p. 92—94, 75%; (IVc; $R = Pr^{i}O$) m.p. 109-110°, 95%] as shown in Scheme 2.4 The chlorocarbonates (II) gave the stable crystalline N-methylimidazolium[†] derivatives (III)⁴[‡] which react rapidly with amino-acids in water.

We studied the stability of (IVa-c), and found that free glycine is quantitatively released under the conditions which cause cleavage of the benzyloxycarbonyl group (40% HBr in AcOH or H_2 , Pd/C). The isopropylcarbonate (IVc) is the most stable in acid; it does not decompose in CF₃- $CO_2H-CH_2Cl_2$ which cleaves t-butoxycarbonyl-protected amines⁵ (see Table). This substituted benzyloxycarbonyl

TABLE

% Cleavage of Z(4-ROCO) amino-protecting group of glycine (reaction followed by quantitative determination of free glycine⁶ or by the change of absorbance at 290 nm)

Conditions (22°)	-		(IVa)	(IVb)	(IVc)
CF ₃ CO ₂ H-CH ₂ Cl ₂ :1-1, 1 h			10	2	<0.2
5% K ₂ CO ₃ , 1 h	••	• •	100	80	35
0.1 N-NaOH, 10 min	••	• •	100	100	100

SCHEME 2

group is easily cleaved in alkali. In 5% K2CO3 the reaction is slow but can be accelerated by the addition of 1 equiv. of hydrazine (98% cleavage after 2 h) and complete removal takes place rapidly in 0.1 N-NaOH.

By the same method, we have prepared other Z(4-PrⁱOCO)-amino-acids in good yields.

(Received, 11th May 1973; Com. 673.)

† 4-Dimethylaminopyridine⁷ also gives stable derivatives but without improvement of the yield.

‡ (Ic) m.p. 61–62°, 80%; (IIc) ν_{c0} (liquid) 1760–1770 cm⁻¹, δ (CDCl₂) 5·29 (CH₂); (IIIc) m.p. 93°, ν_{c0} (Nujol) 1755 and 1785 cm⁻¹, δ (D₂O) 5.68 (CH₂), 87% yield from (Ic); (IIIa) m.p. 62°; (IIIb) m.p. 51°.

- ¹ L. A. Carpino and G. Y. Han, J. Org. Chem., 1972, 37, 3404.
- ² E. Wünsch and R. Spangenberg, Chem. Ber., 1971, 104, 2427.
 ³ A. B. Turner, Quart Rev., 1964, 18, 347.
- ⁴ E. Guibé-Jampel, G. Bram, and M. Vilkas, Bull. Soc. chim. France, 1973, 1021.
 ⁵ U. Ragnarsson, S. Karlsson, and G. Lindeberg, Acta Chem. Scand., 1970, 24, 2821.

- ⁶ J. Bartos, Ann. pharm. franç., 1964, 22, 383. ⁷ E. Guibé-Jampel and M. Wakselman, Chem. Comm., 1971, 267.