Pentafluoro-orthotellurates of Silicon, Germanium, and Tin

By FRIEDRICH SLADKY* and HOLGER KROPSHOFER

(Institut für Anorganische und Analytische Chemie der Universität, A 6020 Innsbruck, Innrain 52a, Austria)

Summary Reaction of Me₄Sn, Me₃(Si,Ge,Sn)Cl, and SiCl₄ with HOTeF₅ or AgOTeF₅ gives Me₃(Si,Ge,Sn)OTeF₅ and $Si(OTeF_5)_4$; $Me_3SiOTeF_5$ has been tested as a reagent for the transfer of the F₅TeO group in metathetical reactions with fluorides and the structure of the adducts of Me3-SnOTeF5 with MeCN and Me2SO has been studied by i.r. and n.m.r. spectroscopy.

THE F₅TeO group is an extremely versatile ligand for main group elements ranging from boron to xenon.¹ Owing to the high electronegativity and apolarity of this group, some of the pentafluoro-orthotellurates show interesting chemical behaviour $[e.g. B(OTeF_5)_3$ is superior to BF₃ in its Lewis acidity, and $Xe(OTeF_5)_2$ is the most stable xenon(II) comexcept XeF₂].

Reaction of HOTeF₅ with Me₃(Si,Sn)Cl at room temperature affords Me₃(Si,Sn)OTeF₅:

 $\mathrm{Me}_3\mathrm{SiCl} + \mathrm{HOTeF}_5 \to \mathrm{HCl} + \mathrm{Me}_3\mathrm{SiOTeF}_5$ (b.p. 94 °C at 714 mmHg)

 $Me_3SnCl + HOTeF_5 \rightarrow HCl + Me_3SnOTeF_5$ (b.p. 48 °C at 0.1 mmHg).

Alternatively the latter compound can be prepared by protonation of Me₄Sn:

 $\mathrm{Me_4Sn} + \mathrm{HOTeF_5} \rightarrow \mathrm{CH_4} + \mathrm{Me_3SnOTeF_5}$

Interestingly Me_3GeCl does not interact with HOTeF₅, but Me₃GeOTeF₅ can be prepared by use of AgOTeF₅ in acetonitrile solution:

 $Me_3GeCl + AgOTeF_5 = AgCl + Me_3GeOTeF_5$ (b.p. 45 °C at 12 mmHg).

The same route affords $Si(OTeF_5)_4$:

 $SiCl_4 + 4 AgOTeF_5 \rightarrow 4 AgCl + Si(OTeF_5)_4 (m.p. 37 °C)$

Me₃SiOTeF₅ has been tested as a reagent for the transfer of the F_5 TeO group in metathetical reactions with covalent halides, such as PF_5 , AsF_3 , SF_4 , and TeF_6 :

 $Me_{3}SiOTeF_{5} + E-F \rightarrow Me_{3}SiF + E-OTeF_{5}$

With the exception of TeF_6 (no reaction) and AsF_3 , fluorination of the F_5 TeO group takes place:

 $Me_3SiOTeF_5 + PF_5, SF_4 \rightarrow Me_3SiF + TeF_6 + POF_3, SOF_2$

 AsF_3 initially affords $F_2AsOTeF_5$ which dismutates on distillation to AsF_3 and $As(OTeF_5)_3$:

 $\begin{array}{l} \mathrm{Me_3SiOTeF_5} + \mathrm{AsF_3} \rightarrow \mathrm{Me_3SiF} + \mathrm{F_2AsOTeF_5} \\ \mathrm{3}\ \mathrm{F_2AsOTeF_5} \rightarrow \mathrm{2AsF_3} + \mathrm{As(OTeF_5)_3} \quad (\mathrm{b.p.} \quad \mathrm{35\ ^{\circ}C} \quad \mathrm{at} \quad 0.1 \end{array}$ mmHg).

The co-ordination chemistry of Me₃SnOTeF₅ is of interest because of the ligand behaviour of the F₅TeO group. The coupling constants *J*(^{119,117}Sn-Me) at 58.1 and 55.2 Hz respectively are within the established range for fourco-ordinate tin² and indicate together with the presence of $v_{sym}(SnC_3)$ at 512 cm⁻¹ a non-bridging, covalently bound F_5 TeO ligand. Interaction of Me₃SnOTeF₅ with an excess of MeCN or Me₂SO increases the tin-proton coupling constants by ca. 10 Hz, to values diagnostic of five-coordinate tin.³ The disappearance of $\nu_{sym}(SnC_3)$ in addition proves these adducts to be based on a trigonal bipyramidal geometry in which the methyl groups occupy the equatorial positions. Comparison of $R = J_{AB} / v_0 \delta_{AB}$ -values of the AB_4 type ¹⁹F n.m.r. spectra of these adducts with Cs⁺F₅TeO⁻

(Received, 4th June 1973; Com. 805.)

¹A. Engelbrecht and F. Sladky, Monatsh., 1965, 96, 159; F. Sladky, H. Kropshofer, and O. Leitzke, J.C.S. Chem. Comm., 1973, 134; A. Clouston, R. D. Peacock and G. W. Graser, Chem. Comm., 1970; F. Sladky and H. Kropshofer, Inorg. Nuclear Chem. Letters, 1972, 8, 195; F. Sladky, Monatsh., 1970, 101, 1559, 1571, 1578. ² P. B. Simons and W. A. G. Graham, J. Organometallic Chem., 1967, 10, 457.

⁸ M. K. Das, J. Buckle, and P. G. Harrison, Inorg. Chim. Acta, 1972, 6, 17; T. F. Bolles and R. S. Drago, J. Amer. Chem. Soc., 1966, 88, 5730.