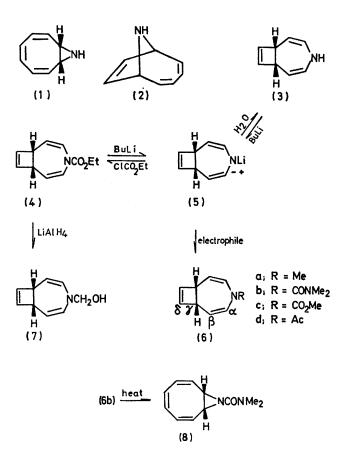
4-Azabicyclo[5,2,0]nona-2,5,8-triene and Derivatives

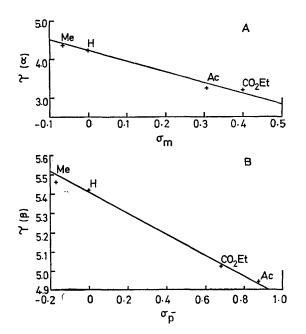
By A. G. ANASTASSIOU* and R. L. ELLIOTT


(Department of Chemistry, Syracuse University, Syracuse, New York 13210)

Summary The synthesis of 4-azabicyclo[5,2,0]nona-2,5,8triene and its conversion into various derivatives are described.

PREVIOUSLY we have described the synthesis of the C_8H_8NH bicyclic compounds (1)¹ and (2)², and now report the preparation of another compound (3). Besides its significance as a valence tautomer of 1*H*-azonine,³ this substance is readily convertible into various *N*-substituted derivatives which constitute ideal n.m.r. models for quantitatively assessing the effect of *N*-substitution on the electron density at C_{α} and C_{β} of (6).

Compound (3) [air-sensitive clear oil; ν_{N-H} (neat) 3310 cm⁻¹, λ_{max} (n-hexane)[†] 264·5 nm (ϵ 1580), 219 (2330); m/e 119 (P^+ 45%); τ (60MHz, CCl₄) 3·81 (2H, s, H₈), 4·20 (2H, dd, J 9·5, 6·0 Hz, H_a), 5·43 (2H, dd, J 9·5, 4·5 Hz, H_β), 6·25 (2H, d, H_{\gamma})] was prepared by degradation of its urethane (4)⁴ on treatment with either n-butyl-lithium or potassium t-butoxide in tetrahydrofuran. While (3) is surprisingly inert to ClCO₂Et, its lithio salt, prepared either from (4) or on reaction of (3) with BuⁿLi, readily yields (4) (n.m.r.) when treated with this reagent and derivatives (6a),[‡] (6b)[‡] (m.p. 45-45·5°), (6c) (n.m.r.),⁵ and (6d) (n.m.r.)¹when exposed to MeI, ClCONMe₂, ClCO₂Me, and ClCOMe, respectively. In contrast, exposure of (4) to LiAlH₄ affords the amino-alcohol (7),[‡] m.p. 53·5-54·5°.


In theory, the influence of the NR function in (6) should be primarily inductive on the α site and mesomeric on the β position. In full substantiation of this prediction, the n.m.r. chemical shifts of the α protons show good linear correlation with the $\sigma_{\rm m}$ substituent constants (Figure, A) while those of the β hydrogens correlate well with the corresponding $\sigma_{\rm p}^-$ terms (Figure, B).§ Also, as judged by

† Band intensities are necessarily approximate owing to serious difficulties encountered in handling this substance which readily resinifies when neat.

‡ This substance displays consistent n.m.r., i.r., u.v., and m.s. characteristics.

§ The use of the chemical shifts of H_β and H_α extracted from the n.m.r. spectra of (**6b**) and (**7**) allows one to estimate $\sigma_{p}^{-} = +$ 0.55 and $\sigma_{m} = +$ 0.22 for CONMe₂, and $\sigma_{p}^{-} = +$ 0.12 and $\sigma_{m} = +$ 0.03 for CH₂OH.

the n.m.r. criterion the substituent effect in (6) does not appear to extend to the γ and δ positions of the molecule, the protons associated with these sites resonating uniformly at ca. τ 6.3 and 3.8, respectively. Nonetheless, the widely different rates at which compounds (3) (t_{\downarrow} ca. 60 h, decomp.), (6c) $(t_{\frac{1}{2}} ca. 17 h)$,⁵ and (6d) $(t_{\frac{1}{2}} ca. 80 min)^6$ undergo irreversible thermal rearrangement at 76° are suggestive of progressive cross-link weakening with decreased availability of the nitrogen lone pair for participation into the system.

Finally, we note that the urea (6b) is thermally labile, rapidly rearranging (k = 9.97 \pm 1.17 imes 10⁻⁵ s⁻¹, ΔG^{\ddagger} = 25.4 kcal mol⁻¹ at 56.3°) to (8) when warmed in C_6D_6 . The mechanistic implications of this conversion, which is the exact reverse of the $[6,1,0] \rightarrow [5,2,0]$ process observed in the case of (4),⁴ (6c),⁵ and (6d),¹ are under examination.

We thank the National Science Foundation and Petroleum Research Fund, administered by the American Chemical Society for support and Mr. S. Greer for experimental assistance. R.L.E. is a NDEA Graduate Fellow 1971-1974.

(Received, 30th May 1973; Com. 777.)

FIGURE. Plot of ¹H n.m.r. chemical shifts of (6) vs. σ constants of substituent R. [All determinations were made with ca. 0.75Mmolar solutions of (6) in CCl₄.]

- ¹ A. G. Anastassiou, S. W. Eachus, R. L. Elliott, and E. Yakali, J.C.S. Chem. Comm., 1972, 531.
- ² A. G. Anastassiou and R. P. Cellura, J. Org. Chem., 1972, 37, 3126.
- ³ For a review see: A. G. Anastassiou, Accounts Chem. Res., 1972, 5, 281. ⁴ S. Masamune and N. T. Castellucci, Angew. Chem., 1964, **76**, 569.
- ⁵ A. G. Anastassiou, R. L. Elliott, and A. Lichtenfeld, Tetrahedron Letters, 1972, 4569.
- ⁶ A. G. Anastassiou, R. L. Elliott, H. Wright, and J. Clardy, J. Org. Chem., 1973, 38, 1959.