Removal of Protected Peptides from an *ortho*-Nitrobenzyl Resin by Photolysis

By DANIEL H. RICH* and S. K. GURWARA

(School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53706)

Summary Protected peptides can be removed from an ortho-nitrobenzyl resin by photolysis.

RECENTLY several modified resins suitable for the solidphase synthesis of protected peptide fragments have been developed.¹ We report a method for the preparation of *N*-t-butoxycarbonylpeptide free acids by solid-phase peptide synthesis. The protected peptides are synthesized stepwise on an *ortho*-nitrobenzyl resin then removed from the resin by photolysis under conditions which do not cleave acid-labile protecting groups nor decompose aromatic amino-acids. The use of the photolabile *o*-nitrobenzyl group for protection of aldehyde, amino-, and carboxy-groups has been reported.²

An o-nitrochloromethyl resin was prepared by nitration of chloromethylated polystyrene beads (1% divinylbenzene) according to the procedure of Merrifield.³ N-t-Butoxycarbonylamino-acids were attached to the nitroresin by heating under reflux with triethylamine in ethyl acetate.⁴

To remove the N-protected amino-acids from the nitro- sylglycyl-o-nitrobenzyl resin (1a) was resin, the N-t-butoxycarbonylamino-acid nitro-resins were N-t-butoxycarbonylglycyl-o-nitro-resin

suspended in methanol, and irradiated under anaerobic conditions for 12-17 h with stirring in an RPR-100 apparatus (Rayonet, The Southern Co., Middletown,

TABLE

Photolysis of N-t-butoxycarbonylamino-acid 0-nitrobenzyl resins in methanol

N-Protected amino-acid on resin	Yield of N-protected amino-acid (%)	M.p. (°) (reported) ⁷	Photolysis time (h)
Gly	71.2	88—90 (89—90)	12
Leu	64 ·7	8687 (8687)	14
Phe (D,L)	66·4	145 - 147	17
Phe (L)	59.6	87—89 (88—88·5)	15
Tyr-OCH ₂ Ph	52.7	108-110	15
Trp	5 7·3	137—138 (138·5—139·5)	17

Conn.) equipped with RPR-3500 Å lamps. Wavelengths below 3200 Å were filtered out.⁵ The resin was removed by filtration and the solvent evaporated. After purification by chromatography followed by crystallization, the *N*-t-butoxycarbonylamino-acids were isolated in good yield (see Table). No racemization of the amino-acids was detected, and no *N*-t-butoxycarbonylamino-acid remained on the resin.

N-t-Butoxycarbonyl-O-benzyl-L-seryl-O-benzyl-L-tyrosylglycyl-o-nitrobenzyl resin (1a) was synthesized using N-t-butoxycarbonylglycyl-o-nitro-resin (1.05 mmol/g) according to the general procedure of Merrifield.^{3,6} Deblocking was achieved by treatment with 50% trifluoroacetic acid in methylene chloride. Dicyclohexylcarbodiimide was used as the coupling reagent. The tripeptide (1b) was removed from the o-nitro-resin by irradiation at 3500 Å for 12 h as described and was isolated in 62%yield.[†] The tripeptide (1b) prepared in this way was identical to a sample prepared by solution procedures.[†]

Removal of protected peptides from the o-nitrobenzyl

resin by irradiation provides a method for the synthesis of protected peptide fragments suitable for coupling in solution or on a solid support.

This work was supported by a PHS Research Grant from the National Institute of Arthritis, Metabolism, and Digestive Diseases.

(Received, 19th June 1973; Com. 859.)

* Satisfactory amino-acid analysis, microanalysis, t.l.c., n.m.r., and i.r. data were obtained.

¹S. S. Wang, J. Amer. Chem. Soc., 1973, 95, 1328 and refs. 7-15 therein.

- ² U. Zehavi, B. Amit, *chem. Soc.*, 1913, 93, 1323 and Fels. 1-15 therein.
 ² U. Zehavi, B. Amit, and A. Patchornik, J. Org. Chem., 1972, 37, 2281; U. Zehavi and A. Patchornik, *ibid.*, p. 2285; A. Patchornik, B. Amit, and R. B. Woodward, 'Peptides,' ed. E. Scoffone, North-Holland Publishing Co., Amsterdam, 1969, p. 12; J. A. Barltrop, P. J. Plant, and P. Schofield, Chem. Comm., 1966, 822.
 ³ R. B. Merrifield, Biochemistry, 1964, 3, 1385; J. Amer. Chem. Soc., 1963, 85, 2149.
 ⁴ J. M. Stewart and J. D. Young, 'Solid Phase Peptide Synthesis,' W. H. Freeman and Co., San Francisco, 1969, p. 32.

 - ⁵ A. Singh, E. R. Thornton, and F. M. Westheimer, J. Biol. Chem., 1962, 237, 3006.
 ⁶ R. B. Merrifield, Intra-Sci. Chem. Reports, 1971, 5, 183.
 ⁷ G. R. Pettit, 'Synthetic Peptides,' vol. I, Van Nostrand Reinhold Co., New York, 1970, pp. 11-78.