Crystal and Molecular Structure of Tetraphenylcyclotetraphosphine Monosulphide

By Harry P. Calhoun, Michael R. LeGeyt, Norman L. Paddock,* and James Trotter (Department of Chemistry, University of British Columbia, Vancouver 8, British Columbia, Canada)

Summary The title compound, $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}\right)_{4} \mathrm{~S}$, has been Pentaphenylcyclopentaphosphine $\mathrm{Ph}_{5} \mathrm{P}_{5}$ reacts with structurally characterised by a single crystal X-ray study, sulphur to give $\mathrm{Ph}_{3} \mathrm{P}_{3} \mathrm{~S}_{3},{ }^{1}$ from which tributylphosphine and contains a 5 -membered $\mathrm{P}_{4} \mathrm{~S}$ ring.
abstracts sulphur to form $\mathrm{Ph}_{4} \mathrm{P}_{4} \mathrm{~S}$; various structural formulae have been suggested for both sulphides. ${ }^{2-4}$ We have
also prepared the monosulphide from phenyldichlorophosphine and potassium sulphide, and by the reaction of phenylphosphonothioic dichloride with phenylphosphine. The preparative reactions are structurally uninformative, and we have therefore determined the structure of the

Figure. The structure of tetraphenylcyclotetraphosphine monosulphide.
phenyl monosulphide. Crystals of $\mathrm{Ph}_{4} \mathrm{P}_{4} \mathrm{~S}$ are orthorhombic, $\quad a=24 \cdot 700(6), \quad b=13 \cdot 508(3), \quad c=13 \cdot 410(2) \AA$, $Z=8$, space group $P b c a$. The structure was determined with Mo- K_{α} diffractometer data by direct methods, and was refined by full-matrix least-squares methods to $R=0.083$
for 1475 observed reflections. The structure of the molecule is based on a five-membered $\mathrm{P}_{4} \mathrm{~S}$ ring, as shown in the Figure, and not a four-membered P_{4} ring, as suggested previously. ${ }^{5}$ Mean bond lengths are: P-P, $2 \cdot 190(5)$; P-S, $2 \cdot 116(5) ;$ P-C, $1 \cdot 831(22) ; C-C, 1 \cdot 382(16) \AA$. The $P_{4} S$ ring is significantly nonplanar, deviations from the mean plane being: $\mathrm{P}(1), 0 \cdot 19 ; \mathrm{P}(2),-0.24 ; \mathrm{P}(3), 0.24 ; \mathrm{P}(4),-0.15 ; \mathrm{S}$, $-0.02 \AA$. The phenyl groups are nearly perpendicular to the mean plane, the pairs on the same side of the ring being roughly parallel to each other, but perpendicular to the other pair. The endocyclic angles at phosphorus range from $104 \cdot 2(2)^{\circ}$ to $105 \cdot 9(2)^{\circ}$, mean $105 \cdot 2^{\circ}$, and the angle at sulphur is $110 \cdot 4(2)^{\circ}$. The near equality of the angles at phosphorus is to be contrasted with the variability of those in $\mathrm{Ph}_{5} \mathrm{P}_{5}{ }^{6}$, in which the angles range from $94 \cdot 1^{\circ}$ to $107 \cdot 2^{\circ}$, mean 100°. The stability of the monosulphide, indicated by the variety of synthetic methods and the difficulty of removing the remaining sulphur with tributylphosphine, may be due in part to the larger and more regular angles at phosphorus, themselves a result of reduced steric repulsions of the phenyl groups.
(Received 21st June, 1973; Com. 879.)

[^0]
[^0]: ${ }^{1}$ W. Kuchen and H. Buchwald, Chem. Ber., 1958, 91, 2296.
 ${ }^{2}$ E. W. Abel, D. A. Armitage, and R. P. Bush, J. Chem. Soc., 1964, 5584.
 ${ }^{3}$ J. J. Daly and L. Maier, Nature, 1965, 208, 383 ;
 ${ }^{4}$ L. Maier, in 'Organic Phosphorus Compounds,' Ed. G. M. Kosolapoff and L. Maier, Vol. 1, p. 12, Wiley-Interscience, New York, 1972.
 ${ }^{5}$ L. Maier, Helv. Chim. Acta, 1963, 46, 1812.
 ${ }^{6}$ J. J. Daly, J. Chem. Soc., 1964, 6147.

