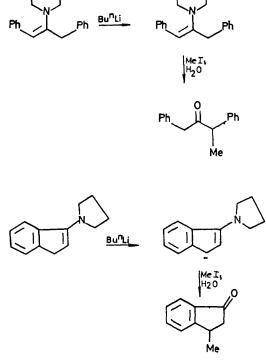
Stabilized Enamine Anions


By HUGH W. THOMPSON* and BRUNO S. HUEGI (Department of Chemistry, Rutgers University, Newark, New Jersey 07102)

Summary Enamines of several ketones having phenyl groups at the α or β positions have been deprotonated to give allylic anions which are reactive nucleophiles; treatment of these intermediates with methyl iodide has led to high yields of methylated ketones.

THE depressed acidity of protons allylic to electron-rich olefins can be enhanced by adjacent anion-stabilizing groups such as carbonyl. Thus monoenamines¹ of 1,3dicarbonyl compounds have recently been deprotonated and used as nucleophiles.² We report here that suitably placed phenyl groups may also confer such acidity in enamines and that the anions resulting from treatment with strong bases³ can be alkylated under mild conditions to give high yields of alkylated ketones after hydrolysis.

The noteworthy characteristics of this procedure are: (i) because enamines are not susceptible to nucleophilic attack, self-condensation analogous to that common during formation of enolates is not encountered; (ii) the anions produced are highly reactive; (iii) because of negligible proton exchange between anion and neutral product, monoalkylation is easily achieved; (iv) these anions have a much higher charge density on carbon than do neutral enamines, therefore N-alkylation is negligible; (v) in certain instances alkylation can be achieved at the position β to the original carbonyl group.

The pyrrolidine enamine of indan-2-one^{4a} in tetra- in about 10 min as judged by measurement of the volume hydrofuran was treated under nitrogen at $ca. -65^{\circ}$ with of gas evolved. The anion was quenched at -65° with n-butyl-lithium in hexane. Proton removal was complete methyl iodide and after 5 min the mixture was hydrolysed

TABLE

Methylation of anions from pyrrolidine enamines

Ketone	Base	Temp. (°)	Product	Yield (%)
Indan-2-one	Bu ⁿ Li	$\begin{array}{c} ca. \ -65\\ 0\\ 45 - 50\\ ca. \ -65\\ 0 - 65\\ ca. \ -40 \end{array}$	1-Methylindan-2-one	82
1,3-Diphenylacetone	Bu ⁿ Li		2-Methyl-1,3-diphenylacetone	85
1,3-Diphenylacetone	LiNPr ¹ 2		2-Methyl-1,3-diphenylacetone	96
Indan-1-one	Bu ⁿ Li		3-Methylindan-1-one ^a	85
Indan-1-one	Bu ⁿ Li ^b		3,3-Dimethylindan-1-one ^c	96
3,4-Diphenylcyclopentenone	Bu ⁿ Li		2-Methyl-3,4-diphenylcyclopent-2-en-1-one	70

* Ref. 5. ^b In two portions, the second equiv. added after the first equiv. of methyl iodide. ^c Ref. 6.

with aqueous HCl, worked-up as usual, and distilled to provide 82% of 1-methylindan-2-one4a of high purity, no attempt having been made to maximize the yield. By contrast, in a study of the normal alkylation of several enamines (including the pyrrolidine enamine) of indan-2one,42 the best yield achieved was 40%. Base-catalysed alkylations with unsubstituted indanones commonly fail

entirely or give extremely low yields, due to the aforementioned self-condensation, which is acute in these compounds.4

We thank the Rutgers Research Council for financial support and G. Spoog for helpful consultations.

(Received, 11th June 1973; Com. 838.)

¹ M. Yoshimoto, N. Ishida, and T. Hiraoka, Tetrahedron Letters, 1973, 39.

¹ M. Yoshimoto, N. Ishida, and I. Hiraoka, *Tetranearon Letters*, 1913, 39.
² Cf. G. Stork and R. L. Danheiser, J. Org. Chem., 1973, 38, 1775.
³ This process is to be distinguished from the α-deprotonation of imines described by G. Stork and S. R. Dowd, J. Amer. Chem. Soc., 1963, 85, 2178.
⁴ (a) A. T. Blomquist and E. J. Moriconi, J. Org. Chem., 1961, 26, 3761; (b) E. D. Bergmann and E. Hoffmann, *ibid.*, p. 3555; (c) H. W. Thompson, *ibid.*, 1968, 33, 621.
⁵ G. Agahigian, H. Plant, G. D. Vickers, and J. van derVeen, Analyt. Chem., 1967, 39, 1583.
⁶ B. D. Pearson, R. P. Ayer, and N. H. Cromwell, J. Org. Chem., 1962, 27, 3038.