## 3,4-Diaryl-2-hydroxy-1,2,5-triazabicyclo[3,2,1]oct-3-enes from the Peracid Oxidation of 3,4-Diaryl-6,7-dihydro-1-methyl-1*H*-1,2,5-triazepines

By Donald L. Trepanier and Samuel Wang

(Dow Chemical U.S.A., Human Health Research and Development Laboratories, Zionsville, Indiana 46077)

and CHARLES E. MOPPETT\*†

(Dow Chemical U.S.A., Eastern Research Laboratory, Wayland, Massachusetts 01778)

Summary The reaction of benzil with 1-(2-aminoethyl)-1-methylhydrazine led to 6,7-dihydro-1-methyl-3,4-diphenyl-1*H*-1,2,5-triazepine, which on treatment with *m*-chloroperbenzoic acid gave 2-hydroxy-3,4-diphenyl-1,2,5-triazabicyclo[3,2,1]oct-3-ene; this in turn yielded 1-acetyl-2,3-dihydro-5,6-diphenyl-1*H*-imidazo[1,2-*a*]imidazole on reaction with acetic anhydride.

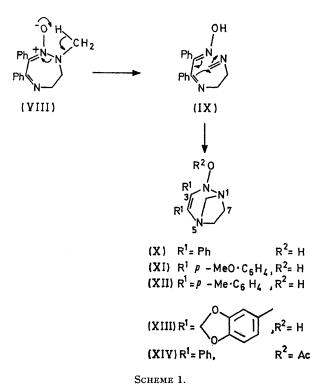
We have found that 3,4-diaryl-6,7-dihydro-1-methyl-1*H*-1,2,5-triazepines are readily available from the reaction of benzils with 1-(2-aminoethyl)-1-methylhydrazine (I).<sup>1</sup> For example, treatment of benzil with (I) in the presence of benzene and toluene-*p*-sulphonic acid with azeotropic removal of water led to (II), (82%); an orange, crystalline solid, m.p. 118° (from Pr<sup>i</sup>OH);  $\nu$  (Nujol) 1610, 1575, 1490, 965, 770, and 690 cm<sup>-1</sup>;  $\delta$  (CDCl<sub>3</sub>) 2.87 (3H, s, NMe), 3:35—3:87 (4H, m, NCH<sub>2</sub>CH<sub>2</sub>N), and 6:8—7.5 (10H, m, (12,760), 290sh (6890), C<sub>6</sub>H<sub>5</sub>); *M*<sup>+</sup> 263, C<sub>17</sub>H<sub>17</sub>N<sub>3</sub>;  $\lambda_{max}$  (EtOH) 230 ( $\epsilon$  15,570), 253 HCl) 263 and 405 nm.

† Present address: Medical Research Laboratories Directory

 $\rm NH_2 CH_2 CH_2 NMe NH_2$ 

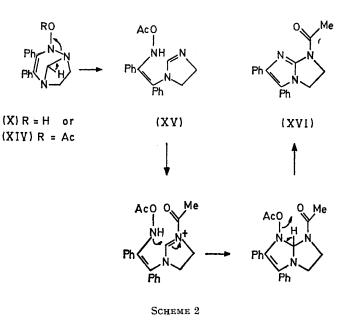
(I)




(II) R = Ph(III)  $R = p - MeO \cdot C_6 H_4$ (IV)  $R = p - Me \cdot C_6 H_4$ 

$$(Y) R =$$

(VI) R = m - MeO · C<sub>6</sub>H<sub>4</sub> (VII) 4,5- dihydro


(12,760), 290sh (6890), and 360 nm (3570);  $\lambda_{max}$  (EtOH–1N-HCl) 263 and 405 nm.

The generality of this reaction was demonstrated by the preparation of (III)-(VI) from (I) and the appropriately substituted benzil.<sup>‡</sup>



undergo a [2,3] signatropic shift<sup>4,5</sup> leading to (IX) which may then, by a conventional Diels-Alder reaction give (X).

The other triazepines (III)-(V) were transformed in similar fashion to the 3,4-diaryl-2-hydroxy-1,2,5-triazabicyclo[3,2,1]oct-3-enes (XI)-(XIII).



Reduction of (II) with sodium borohydride gave 4,5,6,7tetrahydro-1-methyl-3,4-diphenyl-1H-1,2,5-triazepine (VII), m.p. 113-114°;§ which was also derived from the reaction of (I) with  $\alpha$ -bromo- $\alpha$ -phenylacetophenone.

Treatment of (II) with *m*-chloroperbenzoic acid led to a white crystalline solid, m.p. 184-185° (from EtOH), which we formulate as 2-hydroxy-3,4-diphenyl-1,2,5-triazabicyclo-[3,2,1]oct-3-ene (X); v (Nujol) 3250, 1640, 895, and 700 cm<sup>-1</sup>;  $\delta$  (CDCl<sub>3</sub>) 2.62—3.97 (5H, m, NCH<sub>2</sub>CH<sub>2</sub>N and NOH), ¶ AB quartet,  $\delta_{A}$  5.23,  $\delta_{B}$  4.67 ( $J_{AB}$  18 Hz, NCH<sub>2</sub>N), and 6.78—7.56 (10H, m, C<sub>6</sub>H<sub>5</sub>);  $M^{+}$  279, C<sub>17</sub>H<sub>17</sub>N<sub>3</sub>O;  $\lambda_{max}$ (EtOH) 242 ( $\epsilon$  10,470);  $\lambda_{max}$  (EtOH-1N-HCl) 256 nm; positive test for hydroxylamine with triphenyltetrazolium chloride.2,3

We believe that a reasonable mechanism (Scheme 1) for the formation of (X) involves, initial electrophilic attack by the peracid to generate (VIII) which is constrained to

Acetylation of (X) with Ac<sub>2</sub>O-C<sub>5</sub>H<sub>5</sub>N at 40° gave the acetyl derivative (XIV), m.p. 122-124°.§ The mass spectrum of (XIV) displays a M + 42 peak<sup>6</sup> which probably arises through a thermal reaction involving the acetylation of the neutral molecule by keten prior to ionization. We believe that this observation has some bearing on the acetylation experiment leading to (XVI). Base-catalysed hydrolysis (EtOH-KOH) of (XIV) regenerated (X).

Treatment of either (X) or (XIV) with acetic anhydride at 100°, however, led to (XVI), m.p. 199-201° (from ethanol). It is apparent from inspection of molecular models that the proton of the methylene bridge endo to the ethylene backbone of (X) or (XIV) is *trans* coplanar to the N(1)-(2) bond; an ideal geometry for a 1,2-elimination reaction generating in this case (XV) which, by addition and elimination according to the synopsis of Scheme 2 leads to (XVI).

## (Received, 11th June 1973; Com. 583.)

The rate of reaction of those benzils with para oxygen substituents is slower than that for benzil, 3,3'-dimethoxybenzil, and 4,4'dimethylbenzil. We attribute this to the electron-donating properties (+ mesomeric effect) of the para oxygen substituents which results in a decreased electrophilicity for these benzils.

§ Structure assignment in agreement with spectral data.

- ¶ One of the protons of this multiplet is readily exchanged with deuterium oxide.
- <sup>1</sup> D. L. Trepanier, J. E. Richman, and A. D. Rudzik, *J. Medicin. Chem.*, 1967, **10**, 228. <sup>2</sup> G. A. Snow, *J. Chem. Soc.*, 1954, 2588.
- <sup>3</sup> M. A. Thorold Rogers, J. Chem. Soc., 1955, 769.
- <sup>4</sup> J. E. Baldwin, R. E. Hackler, and D. P. Kelly, Chem. Comm., 1968, 538.
- <sup>6</sup> R. B. Woodward and R. Hoffmann, Angew. Chem., 1969, 8, 781.
- K. D. Barrow, D. H. R. Barton, E. B. Chain, C. Conlay, T. C. Smale, R. Thomas, and E. S. Waight, J. Chem. Soc. (C), 1971, 1259.