Reductive Nitrosylation of Group VIIIB Metals

By Douglas Gwost and Kenneth G. Caulton*

(Department of Chemistry, Indiana University, Bloomington, Indiana 47401)

Summary Nitric oxide, in the presence of an amine and alcohol, functions as a one-electron reductant towards Fe^{II} and Co^{II} , yielding bis(nitrosyl) complexes and the solvent-derived alkyl nitrite.

64

NITRIC OXIDE reacts with cobalt complexes of primary and secondary amines and ammonia to form mono-nitrosyl complexes.¹ We report a series of reactions in which NO functions unexpectedly. Passage of NO through a solution of CoCl₂ (1 mol) and NNN'N'-tetramethylethylenediamine (tmeda) (2 mol) in anhydrous methanol yields a solution of the cation Co(NO)₂(tmeda)⁺, which can be precipitated as its PF₆⁻ or BPh₄⁻ salts. A molar ratio of tmeda: CoCl₂ less than 2:1 results in a reduction in yield; thus a molar ratio of 1:1 halves the yield of Co(NO)₂(tmeda)⁺. However, other tertiary amines function equally well; 1:1:1 molar ratios of CoCl₂:2L: NEt₃ produce the dinitrosyl complexes in yields of up to 90%, where 2L = tmeda, 2PPh₃, and 1,2-bisdiphenylphosphinoethane (diphos) (Table).

TABLE

Compound ^a	Yield (%) ^b	v_{NO}/cm^{-1}	Ref.
$Co(NO)_{2}(tmeda)PF_{6}$	63	1876, 1818°	е
$Co(NO)_2(PPh_3)_2BPh_4$	32	1855, 1795°	f
$Co(NO)_2(diphos)BPh_4$	58	1838, 1789°	f
$[Co(NO)_2Cl]_2$	50	1866, 1792ª	g
Fe(NO) ₂ Cl ₂ HNEt ₃		1773, 1697ª	h

^a All compounds reported here have been fully characterized by elemental analysis and/or comparison with authentic samples. ^b Based on yield from recrystallization or sublimation of crude products. ^c KBr disc. ^d Nujol mull. ^e W. Hieber and K. Kaiser, Z. anorg. Chem., 1968, **362**, 169. ^f T. Bianco, M. Rossi, and L. Uva, Inorg. Chim. Acta, 1969, **3**, 443. ^g See ref. 2. ^h W. Hieber and H. Führling, Z. anorg. Chem., 1970, **373**, 48. Trap-to-trap fractionation of the volatile products after the reaction is complete yields 1 mol. equiv. of methyl nitrite (i.r., g.l.c., and high-resolution mass spectral characterization) for each mol. of $Co(NO)_2 2L^+$ produced. Thus in contrast to all known reactions of NO, the system NOamine-MeOH functions as a reducing agent; this is confirmed by our finding that 3 mol. equiv. of NO are consumed for every mol. of $Co(NO)_2 2L^+$ formed [equation (1)].

$$\operatorname{CoCl}_{2} + 3\operatorname{NO} + 2\operatorname{L} + \operatorname{NEt}_{3} \xrightarrow{\operatorname{Room temp}} \operatorname{MeOH} \operatorname{Co(NO)_{2}(2L)Cl} + \operatorname{MeONO} + \operatorname{Et}_{3}\operatorname{NHCl} (1)$$

Solid triethylammonium salt is also isolated in agreement with this stoicheiometry.

In the absence of potential ligands (2L), the reaction with $CoCl_2$ yields $[Co(NO)_2Cl_2$ or $Co(NO)_2Cl_2^-$ [equation (2)].

$$\begin{array}{r} \text{MeOH} \\ \text{CoCl}_2 + 3\text{NO} + \text{NEt}_3 \xrightarrow{\text{MeOH}} 0.5 \ [\text{Co(NO)}_2\text{Cl}]_2 \\ \text{Room temp.} \\ + \text{MeONO} + \text{NEt}_3 \text{HCl} \xrightarrow{\frown} \text{Co(NO)}_2\text{Cl}_2 \text{HNEt}_3 \end{array}$$
(2)

 $FeCl_2$ is likewise reduced by NO-amine-MeOH to yield $Fe(NO)_2Cl_2^-$; NiCl_2 is unreactive under the same conditions.

Regardless of the arbitrary assignment of the oxidation state of co-ordinated NO, it is clear that there has been an oxidation of NO to RONO; we view this as the first example of a stoicheiometric reduction of a metal complex by NO followed by dissociation of the oxidized form of NO and concomitant co-ordination of free NO.

We thank the donors of the Petroleum Research Fund for partial support, and J. K. Kochi for helpful discussion.

(Received, 18th September 1972; Com. 1618.)

¹ T. Jackson, M. Baker, J. Edwards, and D. Tutas, *Inorg. Chem.*, 1966, 5, 2046; R. Feltham and R. Nyholm, *ibid.*, 1965, 4, 1334; P. Gans, *J. Chem. Soc.* (A), 1967, 943. ² A. Sacco, M. Rossi, and C. Nobile, *Ann. Chim.* (*Italy*), 1967, 57, 499.