Oxidising Behaviour of Molybdenum and Tungsten Hexafluorides

By ANN PRESCOTT, DAVID W. A. SHARP, and JOHN M. WINFIELD* (Department of Chemistry, University of Glasgow, Glasgow G12 8QQ)

Summary Silver metal reacts with Mo_6F or WF_6 in acetonitrile to give $[Ag^{II}(NCMe)_4][Mo^vF_6]_2$ or $[Ag^{I}(NCMe)_2] [W^vF_6]$ respectively; the results clearly show the greater oxidising power of MoF_6 as compared with WF_6 .

It has been suggested previously¹ that molybdenum hexafluoride is a stronger oxidising agent than tungsten hexafluoride, but definitive evidence is lacking. Silver metal is oxidised by the hexafluorides in acetonitrile at room temperature to give soluble silver(II) hexafluoromolybdate-(v) and silver(I) hexafluorotungstate(v) demonstrating unambiguously that MoF_6 is the stronger oxidising agent. The difference in behaviour is consistent with recent estimates of the hexafluorides' electron affinities.² The solvent properties of MeCN are crucial, for example in solvating Ag⁺ (ref. 3) and Ag²⁺. The oxidation of metals by this method is quite general; for example thallium and lead react with WF₆ in MeCN to give thallium(I) and lead(II) hexafluorotungstates(v) respectively.

The white, moisture-sensitive solids isolated from the Ag reactions have been characterised as $[Ag^{II}(NCMe)_4]$ - $[Mo^vF_6]_2$ and $[Ag^I(NCMe)_2][W^vF_6]$ by elemental (C, H, F, and N) analysis, their i.r. spectra which show the presence of co-ordinated MeCN and bands assigned to MF_6^- anions by analogy with AMF_6 (A = K or Cs, M = Mo or W) compounds,⁴ and the room temperature e.s.r. spectrum of the Ag^{II} compound, g = 2.3300. Co-ordinated MeCN is

readily replaced by pyridine, but its attempted removal by prolonged pumping leads to decomposition.

TABLE

Totally symmetric M-F stretching frequencies (cm⁻¹)

MoF, in MeCN	••		••	740
$CsMoF_6$ (s)	••		••	676
[Ag ^{II} (NCMe) ₄][Mo ^v F	6]2 (S)		••	676
MoF ₆ in MeCN ^a	••	••		676
WF ₆ in MeCN ^b	••	••	••	773
$CsWF_6$ (s)	••	••	••	695
$[Ag^{I}(NCMe)_{2}][W^{v}F_{6}]$	(s)	••	••	695
WF ₆ − in MeCN [◦]	••	••	••	770ª, 705, 695

^a Ag^{II} and Cs compounds. ^b H. J. Clase, A. M. Noble, and J. M. Winfield, Spectrochim. Acta, 1969, 25A, 293. ^c Ag^I and Cs compounds. ^d Not always observed.

Bands in the Raman spectra of MF_6 and MF_6 - compounds assigned to totally symmetric M-F stretching modes on the basis of solution polarisation measurements are given in the Table. Solutions containing the WF_6^- anion contain two completely polarised bands, and a third band at 770 cm^{-1} which is assigned to WF₆ is often observed in freshly prepared solutions. Tungsten pentafluoride disproportionates readily to give the tetra- and hexa-fluorides,⁵ and a similar disproportionation has been noted for quinolin-8-ol derivatives of Wv in basic solution.⁶ It is possible that the additional band near 700 cm⁻¹ is due to formation of WF_6^{2-} by disproportionation.

We thank Miss A. McFarlane and Dr. A. L. Porte for recording the Raman and e.s.r. spectra, and the S.R.C. for a grant towards the purchase of a Raman spectrometer. A.P. acknowledges the receipt of a Turner and Newall Fellowship.

(Received, 1st June 1973; Com. 789.)

¹ J. R. Geichmann, E. A. Smith, S. S. Trond, and P. R. Ogle, *Inorg. Chem.*, 1962, 1, 661; N. Bartlett, *Angew. Chem. Internat. Edn.*, 1968, 7, 433; T. A. O'Donnell and D. F. Stewart, *Inorg. Chem.*, 1966, 5, 1434. ² J. Burgess, I. Haigh, and R. D. Peacock, *Chem. Comm.*, 1971, 977; J. Burgess and R. D. Peacock, personal communication.

⁸ V. A. Pleskov, Zhur. fiz. Khim., 1948, 22, 351.

⁴ R. D. Peacock and D. W. A. Sharp, J. Chem. Soc., 1959, 2762; D. R. Russell, Ph.D. Thesis, University of Glasgow, 1963.

- ⁵ J. Schröder and F. J. Grewe, Chem. Ber., 1970, 103, 1536.
- ⁶ R. D. Archer, W. D. Bonds, jun., and R. A. Pribush, Inorg. Chem., 1972, 11, 1550.