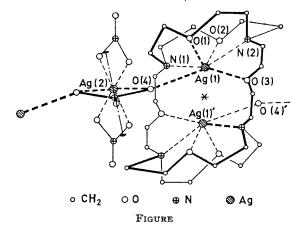

Cryptates with Macrotricyclic Ligands: the Crystal and Molecular Structure of the Silver [3]-Cryptates, C₂₄H₄₈N₄O₆,3AgNO₃

By Roland Wiest and Raymond Weiss*

(Institut de Chimie, Laboratoire de Christallochimie associé au C.N.R.S., Université Louis Pasteur, B.P. 296/R8, 67008 Strasbourg, Cedex, France)


Summary A single-crystal X-ray diffraction study of the [3]-cryptate, $C_{24}H_{48}N_4O_6$, $3AgNO_3$ shows that the macrotricyclic ligand encloses two metal cations; the crystal structure consists of $(C_{24}H_{48}N_4O_6Ag_2)$ and $Ag(NO_3)_3$ units connected by bridging oxygen atoms from nitrato-groups to form chains which are parallel to the [001] direction.

In continuation of our investigations of macrocyclic metal cation complexes¹ we now report the structure of a novel cryptate with the macrotricyclic ligand (I).

Ligand (I) forms complexes with various metal salts.² Suitable crystals of (I), $3AgNO_3$ were obtained by slow evaporation of a methanol-butanol solution of the ligand and silver nitrate.

(I),3(AgNO₃) crystals are monoclinic, a=24.942(4), b=10.134(2), c=15.882(2) Å, $\beta=121.86(2)^{\circ}$, $D_{\rm m}=$

 $1.95\pm0.05,~D_{\rm C}=1.945~{\rm g~cm^{-3}}$ based on Z=4, space group C2/c, 3612 diffractometer observations with Mo- K_{α} radiation, R=0.038.

The structure was solved by Patterson and Fourier techniques and refined by least-squares methods with anisotropic thermal factors for all non-hydrogen atoms.

In (I),3(AgNO₃), two silver cations are located inside the molecular cavity of the macrotricyclic ligand (I). They give rise to (I)Ag2 units located at a centre of symmetry of the cell. Each silver atom of these units is bound to five heteroatoms of (I) and to an oxygen atom of a nitrato-group which is also co-ordinated to a third silver atom. This silver atom is located outside ligand (I) on a crystallographic twofold symmetry axis and engaged in Ag(NO₃)₃ units.

The Figure shows the structures of the (I)Ag₂ and Ag(NO₃)₃ units which are linked together in chains through the Ag(1)-O(4) bond. These chains are parallel to the [001] direction of the crystal.

The Ag(1)-N(1), Ag(1)-N(2), Ag(1)-O(1), Ag(1)-O(2), and Ag(1)-O(3) bond lengths are 2.333(2), 2.558(2), 2.501(3), 3.022(2), and 2.382(2) Å respectively. Similar distances have been found in the silver complexes of the antibiotic X537(A)3 and of grisorixin.4 The Ag(1)-O(4) and Ag(1)-Ag(1') bond lengths are 2.604(2) and 3.876(1) Å respectively. The C-C, C-O, and C-N bonds within ligand (I) have the expected values.

One nitrato-group in the Ag(NO₃)₃ units is unsymmetrically bidendate, the other one is symmetrically bidentate and bridging as shown in the Figure. The Ag(2)-O(4) bond length is $2 \cdot 474(3)$ Å.

(Received, 20th June 1973; Com. 877.)

- D. Moras, B. Metz, and R. Weiss, Acta Cryst., 1973, B29, 383, 388, 396, 400 and references therein.
- ² J. Cheney, J. M. Lehn, J. P. Sauvage, and M. E. Stubbs, *J.C.S. Chem. Comm.*, 1972, 1100. ³ C. A. Maier and I. C. Paul, *Chem. Comm.*, 1971, 181.
- 4 M. Alleaume and D. Hickel, Chem. Comm., 1970, 1422.
- ⁵ C. C. Addison, N. Logan, S. C. Wallwork, and C. D. Garner, Quart. Rev., 1971, 25, 289.