Electron Diffraction Study of Gaseous CH(NO₂)₃ and CCl(NO₂)₃

By N. I. SADOVA, N. I. POPIK, L. V. VILKOV,* JU. A. PANKRUSHEV, and V. A. SHLYAPOCHNIKOV (Department of Chemistry, Moscow State University, Moscow 117234, U.S.S.R.)

Summary The average geometrical structures of $CH(NO_2)_3$ and $CCl(NO_2)_3$ are consistent with C_3 models having similar parameters for C–N, N=O, and ONO, and different ones for \angle NCN; the C–Cl bond length for the tetrahedral carbon atom in $CCl(NO_2)_3$ (1.712 Å) is the shortest yet found.

COMPARISON of the recent data for $CH_3NO_2^1$ and $CH_2CINO_2^2$ with those for Cl_3C — NO_2^3 has shown that the C–N bond length increases with the number of halogen atoms (see Table). We have now studied the influence of the number of nitro-groups on the structure of $CH(NO_2)_3$ and $CCI(NO_2)_3$.

Our electron diffraction patterns were obtained on a reconstructed commercial apparatus EG-100A (r^3 sector) with a sample temperature of 70 °C for CH(NO₂)₃ and 45 °C for CCl(NO₂)₃. The merged sM(s) curves from two camera distances were in the range $3 \cdot 4 < s < 31 \cdot 0$ Å⁻¹ for CH-(NO₂)₃ and $4 \cdot 8 < s < 34 \cdot 2$ Å⁻¹ for CCl(NO₂)₃.

Preliminary determination of geometrical parameters was based on the radial distribution curve after assuming C_3 symmetry for both molecules and planarity of the CNO₂groups. Further refinement was carried out by leastsquares analysis of the sM(s) curves by the program due to Seip.⁴ The final results are listed in the Table. The *R*-factors, $[\Sigma w_{\Delta}^2/\Sigma w | sM(s) |^2]^{\dagger}$ were 8.3 and 7.9% respectively.

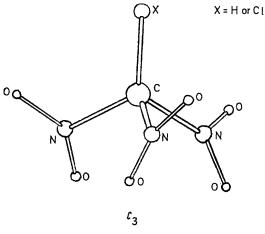


FIGURE. Model of the CX(NO₂)₂ molecule.

The main parameters (see Table) are similar for $CH(NO_2)_3$, $CCI(NO_2)_3$, CH_3NO_2 , and CH_2CINO_2 , but are different in

TABLE. Structural parameters for the nitro-compounds.

Parameters CH ₃ NO ₂ ¹			$\mathrm{CH_3NO_2^1}$	CH₃NO₂′	$ClCH_2NO_2^2$	CCl ₃ NO ₂ ³	CH(NO ₂₎₃ ^a (present work)	CCl(NO ₂) ₃ (present work)
r(C-H)Å			1.088(ass.)	1.080(9)		1.095(ass.)	1.13(ass.)	
r(C-CI) Å					1.765(9)	1.726(5)		1.712(4)
r(N=O)Å			1.224(5)	1.225(1)	$1 \cdot 230(2)$	1·190(6)	$1 \cdot 219(2)$	$1 \cdot 213(1)$
r(C-N)Å	••	••	1.489(5)	1.499(2)	1.493(10)	1.594(20)	1.505(5)	1.513(3)
∠ HCN	••	••	$107 \cdot 2(0 \cdot 5)$	109.0(3.0)	111(ass.)		108.6(0.6)	
∠ CICN	••	••		-	114(1)	106.0(1,1)		$112 \cdot 1(0 \cdot 5)$
∠ ONO	••	••	$125 \cdot 3(0 \cdot 5)$	$125 \cdot 0(0 \cdot 2)$	128(2)	$131 \cdot 7(2 \cdot 6)$	$128 \cdot 6(0 \cdot 3)$	$128 \cdot 3(0 \cdot 5)$

^a Mean amplitudes for HC(NO₂)₃ are *l*(C-N) 0.049(2), *l*(N=O) 0.052(2), and those for CCl(NO₂)₃ are *l*(C-Cl) 0.037(5), *l*(C-N) 0.051(3), l(N=0) 0.040(1). Standard deviations from least-squares analyses are given in parentheses. The scale factor does not exceed 0.1%. These do not include estimates of systematic error.

CCl₃NO₂, especially the C-N bond length. The C-Cl bond lengths are similar, being shortest in CCl_3NO_2 and $CCl(NO_2)_3$. The C-Cl bond length in the latter is even shorter than in $CH_2 = CHCl^5$ (1.728 Å). Thus the tetrahedral C-Cl bond length varies within an interval of ca. 0.1 Å, from 1.71 Å in $CCl(NO_2)_3$ to 1.828 Å in $CCl(CH_3)_3$.

The average conformation for each molecule corresponds to NO2 torsion angles of 26° for CH(NO2)3 and 49° for $\text{CCl}(\text{NO}_2)_3$. The NO_2 torsion angle ϕ is 0° for the conformation in which the bonds C-X (X = H or Cl) and N=O lie in the same plane.

The vibration amplitudes for the pairs of atoms $N \cdot \cdot \cdot O$ and $O \cdots O$, depending on the torsion, are very large (0.17-0.20 Å), confirming that the barrier to internal rotation for $\phi = 0^{\circ}$ is small.

We thank Professor R. L. Hilderbrandt for sending us, before publication, the results of his electron diffraction investigation of the CH₃NO₂ molecule.

(Received, 21st June 1973; Com. 885.)

- ¹ A. P. Cox and S. Waring, J.C.S. Faraday II, 1972, 68, 1060.

- ^A. 1. Cost and S. Walney, J. Cost Fundary 11, 1912, 601, 1000.
 ^AN. I. Sadova, L. V. Vilkov, and T. M. Anfimova, J. Struct. Chem., 1972, 13, 763.
 ^B R. E. Knudsen, C. F. George, and J. Karle, J. Chem. Phys., 44, 2334.
 ⁴ B. Andersen, H. M. Seip, T. G. Strand, and R. Stølevik, Acta Chem. Scand., 1969, 23, 3224.
 ⁵ R. C. Iley and M. I. Davis, J. Chem. Phys., 1972, 57, 1909.
 ⁶ R. L. Hilderbrandt and J. D. Wisser, J. Chem. Phys., 1971, 55, 4648.
 ⁷ R. L. Hilderbrandt and J. D. Wisser, J. Chem. Phys., 1972, 1072.

- ⁷ R. L. Hilderbrandt, personal communication, 1973.