Bridging Cycloheptatrienyl Complexes: X-Ray Crystal Structure of $[Ru_2(CO)_5(SiMe_3)(C_7H_6SiMe_3)]$

By Anthony Brookes, Judith Howard, Selby A. R. KNOX, VICTOR RIERA, F. GORDON A. STONE, * and Peter Woodward (Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

Summary Cycloheptatrienes, $7\text{-RC}_7\text{H}_7$, react with $[\text{Ru}(\text{CO})_4(\text{SiMe}_3)]_2$ to afford *inter alia* fluxional complexes $[\text{Ru}_2(\text{CO})_5(\text{SiMe}_3)(\text{C}_7\text{H}_6\text{R})]$ (R = H, Me, Ph, C₆F₅); an X-ray structural study on a minor product from C₇H₈ reveals ring substitution by a trimethylsilyl group.

COMPLEXES in which a C_7 -ring forms a bridge between two metal atoms bonded together are rare. The rutheniumruthenium bonded complex $[Ru(CO)_4(SiMe_3)]_2$ (I) seemed ideally suited as a precursor,¹ and we report a general synthesis of the species $[Ru_2(CO)_5(SiMe_3)(C_7H_6R)]$ (II; R = H, Me, Ph, C_6F_5) from reactions with cyclohepta-1,3,5triene or its 7-substituted derivatives. Due to the removal of a trimethylsilyl ligand from one of the ruthenium atoms during the course of reaction, these species establish a mode of bonding of a C_7 -ring to two metal atoms different from the symmetrical attachment recently reported.²

protons persists at -90° corresponding to a low energy rearrangement process. In contrast, the ¹H n.m.r. spectrum of (II; R = Ph) is highly temperature dependent between $+60^{\circ}$ and -90° .

Compound (II; R = H) $[v_{max}(CO) 2063s, 2007s, 2003s, 1984w, and 1958m cm⁻¹; <math>(M-nCO)^+$, n = 0-5; ¹H n.m.r. τ 6·14 (7H, s, C_7H_7) and 9·66 (9H, s, SiMe₃)] is formed as orange crystals, m.p. 137°, from cycloheptatriene and (I) in heptane under reflux. The singlet signal for the seven ring

A single crystal X-ray study believed to be on (II; R = H) revealed the structure shown in the Figure, establishing the existence of a minor product (II; R = SiMe₃), since isolated as orange crystals m.p. 92° [ν_{max} (CO) 2060s, 2005s, 1999s, 1980w, and 1955m cm⁻¹; (M-nCO)⁺, n = 0—5; (C₇H₆-SiMe₃)⁺].

Crystals of (II; $R = SiMe_3$) are orthorhombic, $P2_12_12_1$, with 4 molecules per unit cell (a = 10.35, b = 12.38, c =17.58 Å). The structure was solved by direct methods from data collected on a Syntex P21 four-circle diffractometer with Mo- K_{α} monochromatised radiation to $2\theta = 50^{\circ}$; current R = 0.049. Within the OC-Ru-Ru-SiMe₃ chain Ru-Ru = 2.937(2) and Ru-Si = 2.456(4) Å, while the angle Ru-Ru-Si is 172.8(1)° with the silyl group bent away from the C₂-ring. The ruthenium-carbon distances of the C_7 -ring [Ru(1)-C(2) = 2.38(1), Ru(1)-C(1) = 2.21(1), Ru $(1)-C(7) = 2 \cdot 23(1), \quad Ru(1)-C(6) = 2 \cdot 29(1), \quad Ru(2)-C(2) = 2 \cdot 2$ 2.90(1), Ru(2)-C(3) = 2.26(1), Ru(2)-C(4) = 2.19(1), and $Ru(2)-C(5) = 2 \cdot 30(1)$ Å] show that Ru(1) is effectively bonded to a diene system C(2), C(1), C(7), and C(6), whereas Ru(2) is bonded to an allyl grouping, C(3)-C(5). The interplanar angle between the diene and allyl fragments is 57°.

The Ru(2)-C(2) distance is effectively non-bonding, but significantly Ru(1)-C(2) is the longest of the "bonded" distances. The overall situation therefore tends very slightly away from the idealised diene-allyl system (II) towards the symmetrical structure recently found in $[Ru_{s}(CO)_{6}(C_{7}H_{7})(C_{7}H_{9})]$.² The trimethylsilyl substituent in the ring occupies a position at one end of the allyl group but it does not necessarily follow that the other substituents R are similarly located in the solid state.

Formation of (II; $R = SiMe_3$) corresponds to transfer of a trimethylsilyl group from ruthenium to the ring. In contrast, reactions of (I) with 7-RC₇H₇ (R = CN, OBu^t) afford the parent complex (II; R = H), presumably *via* loss of Me₃SiR.

We thank the S.R.C. for support.

(Received, 9th August 1973; Com. 1146.)

¹S. A. R. Knox and F. G. A. Stone, J. Chem. Soc. (A), 1969, 2559.

² R. Bau, J. C. Burt, S. A. R. Knox, R. M. Laine, R. P. Phillips, and F. G. A. Stone, preceding communication.