The NS₄⁻ Anion; the Blue Species Formed by Heptasulphur Imide in Basic Media

By TRISTRAM CHIVERS* and IAN DRUMMOND

(Department of Chemistry, The University of Calgary, Calgary, T2N 1N4, Alberta, Canada)

Summary The blue species formed from heptasulphur imide, S_7NH , in basic media has been isolated as the tetra-n-butylammonium salt and characterised as the NS_4^- anion.

We recently reported that elemental sulphur¹ or alkali polysulphides² dissolve in hexamethylphosphoramide (HM-PA) to give blue solutions (λ_{max} 618 nm), attributed to the S₃⁻ radical anion.² This work led to an investigation of the well known blue species formed by sulphur imides *e.g.* S₇NH in basic media, previously assigned to neutral sulphur molecules S_n(n = 2-4),³ the S₇N⁻ ion,⁴ or an open chain form of S₇N^{-.5,6} Here we identify it as the NS₄⁻ anion.

 S_7NH dissolves in HMPA to give a blue solution characterised by a visible absorption band at 595 nm.[†] S_7NMe does not form the 595 nm species in HMPA, although traces of dimethylamine in the solvent cause the direct formation of S_3^- . Acid hydrolysis of freshly prepared blue solutions of S_7NH in HMPA regenerates S_7NH , suggesting a close relationship of the 595 nm species with the cyclo- S_7N^- ion. We confirmed that the blue species is anionic by an electrical transference experiment,⁴ and that it is diamagnetic by the n.m.r. method.⁷ Addition of tetra-n-butylammonium hydroxide to a solution of S_7NH in diethyl ether at -78° produced a yellow-green precipitate, cf. $K^+S_7N^-$, $Na^+S_7N^-$, $Hg(S_7N)$, which solid turned purple-blue after 3 days at room temperature. Elemental analysis supported the composition $Bu^n_4N(S_7N)$, but an X-ray powder photograph revealed the presence of orthorhombic cyclo- S_8 . Elemental sulphur was removed by Soxhlet extraction of the blue solid with hexane under a nitrogen atmosphere. Complete analysis of the blue-black residue showed it to be $Bu^n_4N(S_4N)$ and solutions in HMPA or THF had visible spectra identical to those of S_7NH in HMPA. Thus, solutions of S_7NH in HMPA involve the following equilibria:

$$S_7NH \rightleftharpoons H^+ + cyclo-S_7N^- \rightleftharpoons NS_4^- + \frac{3}{8}S_8$$

(yellow) (blue)

which account for earlier observations on the alkylation of $\mathrm{S_7N^{-,5,6}}$

The i.r. spectrum of $\operatorname{Bun}_4N(S_4N)$ (DMF) showed bands at 900m, 610s, and 580s cm⁻¹ in addition to bands attributed to the Bun_4N^+ cation and the solvent. In the solid state (Nujol) the latter band showed splitting, 582s and 575s

 \dagger The 595 nm species is slowly converted into S_3^- if the solvent contains traces of dimethylamine.

cm⁻¹. The i.r. data do not allow a choice between straight chain, branched chain, or cyclic structures to be made for the S_4N^- anion. A cyclic structure with S-N single bonds is unlikely, however, in view of the high S-N stretching frequency.¹⁰[‡]

Thus, the NS_4^- anion is the first non-cyclic thio-anion of

nitrogen to be characterised, and it is an important intermediate in the synthesis of sulphur imides.¹¹

We thank Professor N. L. Paddock for a sample of S₇NMe, Dr. P. Bayliss for X-ray powder photographs, and the National Research Council of Canada and the University of Calgary for financial support.

(Received, 13th July 1973; Com. 999.)

 \ddagger The i.r. spectrum of yellow Hg(S₇N)₂ (Nujol) showed bands at 795m, 768m, 745m, and 720m cm⁻¹.

- ¹ T. Chivers and I. Drummond, Chem. Comm., 1971, 1623.
- ² T. Chivers and I. Drummond, *Inorg. Chem.*, 1972, 11, 2525. ³ H. Lux and A. Anslinger, *Chem. Ber.*, 1961, 94, 1161.
- ⁴ D. Chapman and A. G. Massey, *Trans. Faraday Soc.*, 1962, **58**, 1291. ⁵ B. A. Olsen and F. P. Olsen, *Inorg. Chem.*, 1969, **8**, 1736.

- ⁶ B. A. Olsen and F. F. Olsen, *Inorg. Chem.*, 1909, 8, 1736.
 ⁶ M. H. Mendelsohn and W. L. Jolly, *J. Inorg. Nuclear Chem.*, 1973, 35, 95.
 ⁷ D. F. Evans, *J. Chem. Soc.*, 1959, 2003.
 ⁸ M. Becke-Goehring and R. Schwarz, *Z. anorg. Chem.*, 1958, 296, 3.
 ⁹ A. Meuwsen and F. Schlossnägel, *Z. anorg. Chem.*, 1953, 271, 226.
 ¹⁰ J. Nelson, *Spectrochim. Acta*, 1971, 27A, 1105; A. J. Banister, L. F. Moore, and J. S. Padley, *ibid.*, 1965, 23A, 2705.
 ¹¹ 'Inorganic Syntheses' vol. XI, ed. W. L. Jolly, McGraw-Hill, New York, 1968, pp. 184–194.