
Non-equivalence of the Apical Fluorine Atoms on Pentaco-ordinate Phosphorus Studied by ¹⁹F Nuclear Magnetic Resonance Spectroscopy

By Dominique U. Robert, D. Jean Costa, and Jean G. Riess*

(Laboratoire de Chimie Minérale, Institut de Mathématiques et Sciences Physiques, Parc Valrose, 06034 Nice Cedex, France)

Summary The non-equivalence of the apical fluorine atoms was observed in the low temperature ¹⁹F n.m.r. spectra of the alkoxyfluorophosphoranes (I) and (II), and is attributed to the adjacent asymmetric carbon atom and not to a hindered rotation of the alkoxy-group.

SEVERAL cases of non-equivalence of the apical fluorine atoms have been reported for thioalkyl¹ or aminoalkyl² substituted trigonal bipyramidal fluorophosphoranes and were attributed to hindered rotation of the substituents about the P–S or P–N bonds. We now report the first examples of non-equivalence of the apical fluorine atoms due to the presence of an adjacent fast-rotating asymmetric alkoxy-group.

At low temperature the ¹⁹F n.m.r. spectra of the alkoxyfluorophosphoranes of general formula $R^1PF_3OR^2$ (I) were in all the cases examined consistent with trigonal bipyramidal geometry in which the alkoxy-group occupies one of the equatorial positions.³ In these compounds the apical fluorine atoms are diastereotopic when R^2 is an asymmetric group. This is now confirmed by the observation of two distinct signals of equal intensity for the apical fluorine atoms in the low temperature ¹⁹F n.m.r. for (I) when R² = MeCHEt, MeCHPr, MeCHCH₂Cl, MeCHCH₂OMe, MeCHCN, 2-chlorocyclohexyl, bornyl, and menthyl. Typical n.m.r. data, for R² = MeCHEt, at -60° , are: δ (F_a) 41·50, δ (F_a) 42·30, δ (F_e) 65·47 (CFCl₃ standard); J(P-F_a) 830, J(P-F_a) 834, J(P-F_e) 960, J(F_a-F_e) = J(F_a,-F_e) 64, J(F_a-F_a) 10·5 Hz.

The spectra were not significantly influenced by temperature between -100 and -30° . At higher temperatures the three fluorine atoms become magnetically equivalent due to a pseudorotation process which, in the alkoxy-derivatives studied, is considerably faster than in the corresponding sulphur¹ or nitrogen⁴ analogues.

That the observed effect is due to the asymmetry of the substituent and not to its hindered rotation about the P–O is supported by the following observations: (i) the magnetic non-equivalence disappears when the asymmetric substituent is replaced by a non-asymmetric but otherwise comparable group, for example MeCHEt by MeCHMe or by EtCHEt; (ii) it also disappears when the diastereotopic character of the fluorine atoms is removed by substitution of the equatorial fluorine in (I) by a second identical R¹ group [compound R¹₂PF₂(OR²) with R¹ = Ph, R² = MeCHEt]; (iii) the non-equivalence is again observed in the phenylethyldifluoroalkoxyphosphoranes PhEtPF₂(OR²) (II) when the alkoxy-group is asymmetric as for example with R² = CNCHMe.

No evidence for the freezing of the rotation around the P-O bond was ever observed even with bulky groups, such as menthyl (to -110°).

The alkoxyfluorophosphoranes were prepared in methylene chloride solutions by cleavage of the Si-O bonds in trimethylsilyl ethers by phenyl- or methyl-tetrafluorophosphoranes, or by diphenyl-, dimethyl-, or phenylethylfluorophosphoranes.3,5

(Received, 16th July 1973; Com. 1004.)

¹S. C. Peake and R. Schmutzler, Chem. Comm., 1968, 1662; S. C. Peake and R. Schmutzler, J. Chem. Soc. (A), 1970, 1049.
²V. V. Sheluchenko, M. A. Sokalskii, M. A. Landau, G. I. Drozd, and S. S. Dubov, Zhur. strukt. Khim., 1969, 10, 142; J. S. Harman and D. W. A. Sharp, Inorg. Chem., 1971, 10, 1538; M. J. C. Hewson and R. Schmutzler, Z. Naturforsch., 1972, 27b, 879.
³D. U. Robert, G. N. Flatau, C. Demay, and J. G. Riess, J.C.S. Chem. Comm., 1972, 1127.
⁴R. Schmutzler, J. Chem. Soc., 1965, 5630; M. A. Landau, V. V. Sheluchenko, G. I. Drozd, S. S. Dubov, and S. Z. Ivin, Zhur. strukt. Khim., 1967, 8, 1097.

⁶ R. Schmutzler, in 'Halogen Chemistry,' ed. V. Gutmann, Academic Press, London and New York, 1967, vol. 2.