The Biosynthetic Origin of D-Isoleucine in the Monamycins

By JOHN S. DAVIES, MICHAEL H. FOLEY, CEDRIC H. HASSALL,*† and in part, VICTOR ARROYO (Department of Chemistry, University College of Swansea, Singleton Park, Swansea SA2 8PP)

Summary ¹⁴C-Labelling studies have established that both L-isoleucine and L-alloisoleucine may serve as precursors of the D-isoleucine residues in members of the family of cyclohexadepsipeptide antibiotics known as the monamycins; possible pathways of biosynthesis of D-isoleucine from these precursors are discussed.

THE identification of D-isoleucine $(4)^1$ as a constituent residue of particular monamycin congeners² was the first observation to be regarded as an exception to the α -epimerisation concept formulated by Bodanszky and Perlman.³ This, together with subsequent studies^{4,5} relating to the origin of D-amino-acid residues in metabolites of microorganisms, has led us to investigate the nature of precursors of D-isoleucine in monamycins. The results of experiments with ¹⁴C-labelled amino-acids are summarised in the Table.

The samples of the ¹⁴C-labelled compounds were added to 20 h cultures of *Streptomyces jamaicensis* which were harvested 28 h later. The monamycins from these cultures were purified, crystallised, and then hydrolysed with 6M hydrochloric acid to give the constituent hydroxy- and amino-acids.⁶ The individual amino-acids were separated as fractions eluted from the analytical column of a Beckman 120C amino-acid analyser. Each fraction was tested for radioactivity. In all these experiments no trace of the alloisoleucine diastereoisomer was found in the hydrolysate; this included the cases where it was fed to the organism. $[U-^{14}C]$ -L-Isoleucine (1) was selectively incorporated into both the D-isoleucine (4) and the L-isoleucic acid (3) components of the monamycins. Although the alloisoleucines

are not of wide occurrence in nature,^{3,7} it was of interest to determine whether the organism could use them for conversion into D-isoleucine. The L-alloisoleucine was incor-

† Present address: Roche Products Limited, Welwyn Garden City, Herts.

Materials		Activity	% Incorporation into monamycin	Activity in D-isoleucine (d.p.m./mmol)	Activity of the amino acids in hydrolysate for comparison (d.p.m./mmol)	Activity of isoleucic acidª (d.p.m./mmol)
[<i>U</i> - ¹⁴ C]-L-Ile	••	50 µC	6· 3	$2{\cdot}1~{ imes}~10^{ m 6}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$2.8 imes 10^6$
$[3,3',4,5^{-14}C]$ -DL-alloIle	••	20 µC	2-4	$1.5 imes10^6$	$\begin{array}{lll} \mathrm{Val} & 2{\cdot}6\times10^4\\ \mathrm{Pip} & 1{\cdot}7\times10^4 \end{array}$	Not measured
[2-14C]-3-methylpent-2-enoic acid ^b		5·1 μC	0.02	1.8×10	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1·9 × 10
[3,3',4,5- ¹⁴ C]-D-alloIle	••	4·2 μC 5·3 μC	0·41 2·8	1.4×10^5 8.5×10^5	Not measured	$1.9 imes 10^{5}$ $9.6 imes 10^{5}$
[0,0,4,0- 0]-L-anone	••	υυμο	20	00 / 10	rot measured	00×10

^a Based on partially purified hydroxy-acid fraction. ^b Synthesised from [2-14C]-malonate via the dehydrobromination of [2-14C]-2-bromo-3-methyl-pentanoic acid (ref. 9). Pip = piperazic acid, HyPip = 5-hydroxypiperazic acid.

porated selectively, as was D-alloisoleucine, but to a lesser degree than the L-isomer. Since [2-14C]-3-methylpent-2enoic acid is not incorporated, it is unlikely that a deamination step resembling that observed for L-phenylalanine⁸ is involved in our case.

Bycroft proposed⁴ that a combined form of a dehydroamino-acid such as (7) derived from the corresponding L-amino-acid residue, might be reduced stereoselectively in vivo, to the p-isomer; this would account readily in our case for the changes in chirality at the two adjacent centres. However, this does not explain for this study, the incorporation of L-isoleucine (1) into both D-isoleucine, and L-isoleucic acid. Rather, our incorporation studies suggest that there is a common intermediate, derivable from either L-isoleucine (1) or L-alloisoleucine (2) for both L-isoleucic acid (3) and D-isoleucine (4). The most likely intermediates to satisfy these requirements are the α -keto-acids [(5), (6)] which through interconversion by inversion at C-37,10 could serve as the sources of L-isoleucic acid or a D-isoleucine. Recent studies by Lipmann¹¹ on the biosynthesis of gramicidin S and the tyrocidins are in accord with this suggestion that *D*-amino-acid units are incorporated directly into monamycin.

.. ..

We thank the S.R.C. for a studentship (to M.H.F.).

(Received, 17th August 1973; Com. 1187.)

- ¹ K. Bevan, J. S. Davies, C. H. Hassall, and D. A. S. Phillips, Chem. Comm., 1969, 1246.
- ² C. H. Hassall, R. B. Morton, Y. Ogihara, and D. A. S. Phillips, J. Chem. Soc. (C), 1971, 525 and references therein.
 ⁸ M. Bodanszky and D. Perlman, Science, 1969, 163, 352.
- ⁴ B. W. Bycroft, Nature, 1969, 224, 595.
- ⁶ E. Katz, Y. Kawai, and J. Shoji, Biochem. Biophys. Res. Comm., 1971, 43, 1035.
 ⁶ K. Bevan, J. S. Davies, C. H. Hassall, R. B. Morton, and D. A. S. Phillips, J. Chem. Soc. (C), 1971, 514.
- ⁷ T. Yajima, M. A. Grigg, and E. Katz, Arch. Biochem. Biophys., 1972, 151, 565.
 ⁸ K. R. Hanson, R. H. Wightman, J. Staunton, and A. R. Battersby, Chem. Comm., 1971, 185.
 ⁹ C. S. Marvel in 'Organic Synthesis,' Wiley, Coll. Vol. III, 1955, p. 495.
- ¹⁰ A. Meister, J. Biol. Chem., 1952, 195, 813.
 ¹¹ F. Lipmann, Science, 1971, 173, 875.