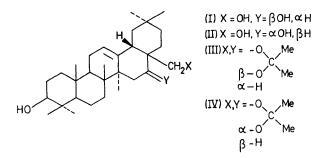
Acetonide Formation from Olean-12-ene-16a,28- and -16B,28-diols

By Jan St. Pyrek

(Instytut Chemii Organicznej PAN, Warszawa, Kasprzaka 44, Polska)


Summary Olean-12-ene-16 α ,28- and -16 β ,28-diols form acetonides under *trans*-acetalization conditions.

RECENTLY Segel and Taube have described the formation of a diacetonide from olean-12-ene- 3β , 16α , 23, 28-tetraol, ¹ the LiAlH₄ reduction product of quillaic acid.² Assuming that the 28-CH₂OH and 16-OH groups are in a *trans*diaxial relation in the 16α , 28-diol (*i.e.* unsuitable for acetonide formation), and in view of the failure to prepare longispinogenin (I) acetonide,³ they concluded that all 16-hydroxyolean-12-enes have configurations opposite to the accepted ones. Evidence for the configuration of the 16-hydroxy-group, very common in oleane triterpenes,⁴ is based on its reactivity and ¹H n.m.r. spectra, and appears to be unquestionable, so the only possible explanation of the above acetonide formation is a change of the ring D conformation to a flexible form, suitable for 'acetonidation', similar to that reported for bicyclic compounds.⁵ To confirm this, longispinogenin (I) and primulagenin A (II) were tested under conditions similar to those used by Segel and Taube.¹

Treatment with excess of 2,2-diethoxypropane in acetone $(25^{\circ}; toluene-p$ -sulphonic acid catalysis) transformed (I) and (II) into their respective acetonides (III) $(46\%, m.p. 190^{\circ}, M^+ 498)$ and (IV) $(80\%, m.p. 223^{\circ}, M^+ 498)$. Equilibrium was reached in 1—2 min, and mixed acetals were also formed. If no 2,2-diethoxypropane was added, only traces of the acetonide (IV) were detected after reaction for 24 h. Both acetonides regenerated the parent triols on hydrolysis with AcOH.

The ¹H n.m.r. spectrum⁶ of (III) shows: δ 1.38 and 1.44 (each s, acetonide- Me), 3.18 and 3.81 (ABq, J 11.5 Hz,

28-CH₂), and 4.12 (dd, $J_{15\beta,16\alpha}$ 12, $J_{15\alpha,16\alpha}$ 6 Hz, 16 α -H). The last signal, typical for an axial proton, is of similar

shape to that in the spectra of compound (I) or its triacetate.7 The spectrum of $(IV)^6$ shows: $\delta 1.38$ and 1.39 (s, acetonide-

¹ R. Segel and A. Taube, Tetrahedron, 1973, 29, 675.

² D. F. Elliot, G. A. R. Kon, and H. R. Soper, J. Chem. Soc., 1940, 612; B. Bischof, O. Jeger, and L. Ruzicka, Helv. Chim. Acta, 1949, **32**, 1911.

⁸C. Djerassi and H. G. Monsimer, J. Amer. Chem. Soc., 1957, 79, 2901.

⁴ 'Rodd's Chemistry of Carbon Compounds, '1969, vol. 11 C, 438.
⁵ P. A. Stadler, A. Nechvatal, A. J. Frey, and A. Eschenmoser, *Helv. Chim. Acta* 1957, 40, 1373.
⁶ 100 MHz ¹H n.m.r. spectra in CDCl₃, expected analytical and spectral data were obtained.

⁷ Longispinogenin was obtained from sunflower flowers along with new triterpene triols, J. St. Pyrek in preparation.

⁸ O. D. Hansen and K. G. Lewis, Tetrahedron Letters, 1968, 3213.

⁹ T. Kubota, F. Tonami, and H. Hinoh, Tetrahedron Letters, 1966, 701; Tetrahedron, 1967, 23, 3333.

Me), 3.34 and 3.93 (ABq, J 11.6 Hz, 28-CH₂), and 3.67 (dd, $J_{15\alpha,16\beta}$ 4.3, $J_{15\beta,16\beta}$ 13.5 Hz, 16 β -H). The coupling constant values indicate that 16β -H and 15β -H are eclipsed, ring D being in the boat conformation. 16-H in primulagenin A triacetate gives a broad singlet, $w_{\frac{1}{2}}$ 7 Hz.

The change in conformation of ring D from the chair (which results in a 1,3-diaxial interaction of 16a-OH with 14 α -Me and 21 α -H) to the boat form, provides the driving force of the comparatively easy acetonide formation from primulagenin A (II). The possibility of a boat form for ring D has been considered as an explanation of the acetyl group migration between positions 16 and 28 in primulagenin A,8 and, further, in the case of olean-11,13(18)-dienes, acetonides were obtained from both $16\alpha, 28$ - and $16\beta, 28$ diols under standard conditions.9

(Received, 26th July 1973; Com. 1049.)