Teucvin, a Novel Furanoid Norditerpene from Teucrium viscidum var. Miquelianum

By Eiichi Fujita,* Itsuo Uchida, and Tetsuro Fujita (Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu 611, Japan)

and Norio Masaki and Kenji Osaki

(Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan)

Summary The structure and absolute configuration of teucvin (I), a new norditerpene isolated from Teucrium viscidum var. Miquelianum has been determined by an X-ray crystallographic analysis of the bromo-derivative (IV) and from some of its reactions.

From the neutral fraction of the extracts of Teucrium viscidum Bl. var. Miquelianum (Maxim.) Hara (Labiatae), we have isolated a new norditerpene, teucvin (I), C₁₉H₂₀O₅, m.p. 207—208°, [α]_D + 88·4° (CHCl₃), u.v., i.r., n.m.r., and mass spectral data were consistent with this structure. It showed p $K_{\mathbf{a}}'$ values of 8.4 and 6.5 by lactone titration in a mixture of methylcellosolve and water (8:2). Ehrlich reaction¹ for furan was positive. Teucvin, on heating with Na₂CO₃ in MeOH under reflux gave the keto-ester (II), $C_{20}H_{24}O_6$, m.p. 175—177°, which was converted into the bromoacetate (IV) via NaBH₄ reduction into (III), C₂₀H₂₆O₆, m.p. 207-210°, followed by acylation.

O c 0 0 0

FIGURE

Single crystals of (IV), C₂₂H₂₇O₇Br, m.p. 167—170° (from MeOH-Et₂O), are colourless orthorhombic prisms of space group $P2_12_12_1$, Z=4, $a=12\cdot 34$, $b=29\cdot 76$, $c=6\cdot 12$ Å, U= 2248 Å³, and $D_{\rm m}$ = 1.408. The X-ray intensity data around the a and c axes were measured visually from equiinclination Weissenberg photographs taken with Cu- K_{α} radiation. The structure was solved by the heavy-atom method and refined by a block-diagonal least squares

(II) $R^1 = 0$, $R^2 = CO_2$ Me (Y) R = H R = H (III) $R^1 = \alpha - OH$, $\beta - H_1 R^2 = CO_2 Me$ (XII) R = D(XI) R = D $(TV)R^1 = \alpha - OCOCH_2 Br, \beta - H_1$ $R^2 = CO_2Me$

OH OH HOH2 C OH OH R2 H OH CO2H

(VII)

(VII)

(IX)
$$R^1 = H$$
; $R^2 = CO_2M$

(VIII) $R^1 = \alpha - OH$, $\beta - H$; $R^2 = CH_2OH$

(IX) $R^1 = H_1 R^2 = CO_2 Me$ (VII) (X) $R^1 = H$, $R^2 = CH_2OH$ (XIII) $R^1 = D$, $R^2 = CH_2OH$

method to an R-factor of 14.0% for 1372 reflections. The absolute configuration of the molecule was determined from the anomalous X-ray dispersion effect of Br atoms on the Weissenberg films.² A perspective view of the molecular

structure along the c-axis is shown in the Figure. Thus, the structure and absolute configuration of this bromoacetate were established as (IV).

The bromoacetate (IV) on hydrolysis with Na₂CO₃ in MeOH under reflux and subsequent Jones oxidation regenerated the keto-ester (II) via alcohol (III).

Hydrogenation of teucvin over Pd-C gave a hexahydroderivative (V) showing λ_{max} (MeOH) 224 nm (ϵ 10,300), attributable to the α,β -unsaturated γ -lactone system.³ Oxidation of teucvin with OsO₄ yielded a diol, C₁₉H₂₂O₇, m.p. 183-184°, whose spectroscopic data supported structure (VI). Teucvin was also shown to be positive for the colour reactions^{4,5} characteristic of the α, β -unsaturated lactones. Thus, the structure of teucvin is shown as (I) except the configurations at C-6 and C-10.

Teucvin was subjected to the Birch reduction to afford a crystalline diol-carboxylic acid (VII), $C_{19}H_{36}O_5$, m.p. 210-212°, identical with the compound, m.p. 210-212°, derived via (VIII) from (III) by LiAlH4 reduction followed by Birch reduction. Since the absolute configurations at C-6 and C-10 of (III) have been established from X-ray analysis of its bromoacetate (IV), those at C-6 and C-10 of teucvin are clarified to be S and R, respectively, unless the Birch reduction inverts their configurations.

Catalytic hydrogenation of compound (III) gave the saturated hydrogenolysis product (IX), which on reduction with LiAlH₄ yielded the diol-carboxylic acid (X). Compound (X) was also produced on Birch reduction of (V). Furthermore, teucvin was treated with Na₂CO₃ in refluxing MeOD to give $[6,10^{-2}H]$ -teucvin (XI), $C_{19}H_{18}O_5D_2$, which on treatment with Na₂CO₃ in refluxing MeOH regenerated teucvin. Catalytic hydrogenation of (XI) yielded the carboxylic acid (XII), C19H24O5D2. Birch reduction of (XII) gave (XIII), C₁₉H₃₀O₅D₂, which corresponded to [6,10-2H]-(X). These results confirmed the maintenance of the original configurations at C-6 and C-10 during the Birch reduction.

Thus, the structure and absolute configuration of teucvin were established as (I).

(Received, 9th July 1973; Com. 977.)

¹ T. Reichstein, Helv. Chim. Acta, 1932, 15, 1110.

M. Bijvoet, A. F. Peerdeman, and J. van Bommel, Nature, 1951, 168, 271.
 C. Djerassi and W. Rittel, J. Amer. Chem. Soc., 1957, 79, 3528.
 H. Baljet, Z. Analyt. Chem., 1938, 113, 378.

⁵ J. E. Bush and D. A. H. Taylor, Biochem. J., 1952, 52, 643.