Preparation and Nuclear Magnetic Resonance Parameters of Perfluoroalkyl-substituted Phosphorus(v) Hydrides

By John W. Gilje,*† Ronald W. Braun, and Alan H. Cowley*

(Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712)

Summary The phosphorus(v) hydrides $(CF_3)_3PH_2$ (1), CF_3PF_3H (2), and $(CF_3)_2PF_4H$ (3) have been prepared by the vapour phase reaction of the appropriate fluorophosphorane, $(CF_3)_nPF_{5-n}$, with Me₃SiH; the labile dihydride, $CF_3PF_2H_2$ (4) was detected in the (reversible) liquid phase reaction of CF_3PF_4 with Me₃SiH.

SINCE the CF₃ group is known to confer stability on a variety of structures¹ we decided to undertake the synthesis of CF₃ derivatives of the currently non-existent PH_5 molecule.²

In a typical reaction, equimolar quantities of $(CF_3)_3 PF_3^3$ and Me₃SiH were allowed to react for 3 min in the vapour phase at ambient temperature. Vacuum fractionation of the volatiles afforded good yields of $(CF_3)_3 PH_2$ (1) in a -84° trap. Similarly prepared are $CF_3 PF_3 H$ (2) $(trap -126^{\circ})$ and $(CF_3)_2 PF_2 H$ (3) $(trap -96^{\circ})$ by the vapour phase reactions of Me₃SiH with equimolar quantities of $CF_3 PF_4^3$ and $(CF_3)_2 PF_3^3$, respectively. Qualitatively the thermal stabilities lie in the order (1) > (2) > (3) with (1) being stable for several minutes at ambient temperature in the liquid phase.

No additional compounds could be isolated when the stoicheiometries of the vapour phase reactions were altered: however, it was possible to detect $CF_3PF_2H_2$ (4) in liquid phase ¹H n.m.r. experiments. For example, a mixture of 0.5 mmol of CF_3PF_4 , 1.0 mmol of Me_3SiH , and 1.0 ml of CF_3Br in a sealed n.m.r. tube was allowed to warm slowly from -196° . After standing for 5 min at -100° the ¹H n.m.r. spectrum of (2) became evident. Further warming

of the solution to -70° resulted in the appearance of an approximately equimolar quantity of (4). Subsequent

CF3

CF3

cooling of the solution to -100° caused the ¹H n.m.r. spectrum of (4) to disappear, thus suggesting the equilibrium:

 $CF_3PF_2H + Me_3SiH \rightleftharpoons CF_3PF_2H_2 + Me_3SiF.$ Similar observations were made in the absence of solvent. However, analogous liquid phase reactions with $(CF_3)_2PF_3$ or $(CF_3)_3PF_2$ failed to produce any new hydrides.

† On sabbatical leave from the Chemistry Department, University of Hawaii, Honolulu, Hawaii, during the 1972-1973 academic year.

CF3

Compounds (1) and (2) exhibit fluxional behaviour. However, below -75° and -140° , respectively, the intramolecular rearrangements become slow on the n.m.r. time scale. Assuming trigonal bipyramidal stereochemistry the low temperature ¹H and ¹⁹F n.m.r. data[‡] for (2) $[J(PF_e)]$ 1008, $J(PF_a)$ 952, J(PH) 955, $J(HPF_a)$ 117, $J(HPF_e)$ 35 Hz; $\delta(H) = 7.46$, $\delta(F_a)$ 15.7, $\delta(F_e)$ 80.6], (3) [$J(PF_a)$ 840, J(PH) 828, $J(HPF_a)$ 100 Hz; $\delta(H) - 7.43$, $\delta(F_a)$ 39.9], and (4) [$J(PF_a)$ 704, J(PH) 792, $J(HPF_a)$ 92 Hz; $\delta(H) - 7.14$ $\delta(\mathbf{F}_a)$ 42.9] establish the ground state geometries shown in the Figure.

Primarily this conclusion is based on previous work⁴ which indicates that $I(HPF_a)$ lies in the range 100-140 Hz whilst $J(HPF_e)$ falls between 20 and 40 Hz. Confirmatory evidence is provided by the axial and equatorial ¹⁹F chemical shifts.⁵ The ground state geometry for (1) is based on the following low temperature n.m.r. observations: (a) two CF, resonances are detected in a 2:1 intensity ratio (at 61 and 36, respectively) in the ¹⁹F spectrum; (b) the ¹H spectrum indicates that the hydride ligands are chemical shift equivalent [$\delta(H) - 6.68$]; (c) $J(HPCF_e)$ is essentially constant (1-2.5 Hz) for (1)-(4).

Prior to the present work the only dihydride of phosphorus(v) which had been reported was F_3PH_2 .⁶ The isolation of (1) and the detection of (4) demonstrate the feasibility of preparing an extensive series of di- (and possibly higher) hydrides of pentaco-ordinate phosphorus. The fluxional character of (1) establishes the fact that the CF₃ group can exhibit migratory behaviour. Previously it had been argued' that the CF₃ group is too bulky to participate in intramolecular rearrangements. The ground state ¹⁹F spectrum of (1) is particularly useful since it yields the first n.m.r. parameters for an axially substituted CF₃ group.

We thank the National Science Foundation and the Robert A. Welch Foundation for financial support.

(Received, 24th July 1973; Com. 1075.)

[±] ¹H Chemical shifts are relative to internal Me₄Si; ¹⁹F chemical shifts are in p.p.m. from external CCl₃F.

¹ For a review, see R. E. Banks and R. N. Haszeldine, Adv. Inorg. Chem. Radiochem., 1961, 3, 337; see also W. D. Blackley and R. R. Reinhard, J. Amer. Chem. Soc., 1965, 87, 802; L. R. Anderson and W. B. Fox, ibid., 1967, 89, 4313; S. P. Markarov, A. Ya. Yakubovich, S. S. Dubov, and A. N. Medvedev, Doklady Akad. Nauk S.S.S.R., 1965, 160, 1319; J. Ashley-Smith, M. Green, M. Mayne, and F. G. A. Stone, Chem. Comm., 1969, 409.

² W. E. Dasent, 'Nonexistent Compounds,' Marcel Dekker, New York, 1965, p. 153.

³ W. Mahler, *Inorg. Chem.*, 1962, 2, 230.
⁴ A. H. Cowley and R. W. Braun, *Inorg. Chem.*, 1973, 12, 491; R. A. Goodrich and P. M. Treichel, *ibid.*, 1969, 7, 694.

⁵ E. L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., 1963, 2, 613.

⁶ P. M. Treichel, R. A. Goodrich, and S. B. Pierce, J. Amer. Chem. Soc., 1967, 89, 2017; R. R. Holmes and R. N. Storey, Inorg. Chem., 1966, 5, 2146.

⁷ H. G. Ang, J. Fluorine Chem., 1972, 2, 181.