
Biosynthesis of Epoxydon with [13C]Acetate

By K. NABETA, A. ICHIHARA, and S. SAKAMURA*

(Department of Agricultural Chemistry, Faculty of Agriculture, Hokkaido University, Sapporo, Japan)

Summary The tetraketide origin of epoxydon produced by Phyllosticta sp. is established by ¹³C n.m.r. measurements on labelled epoxydons obtained from sodium [1-13C]- and [2-13C]-acetate.

EPOXYDON,^{1,2} a major phytotoxic and antitumour metabolite produced by *Phyllosticta* sp.¹ was postulated to be formed via a tetraketide intermediate in the organism, because Phyllosticta sp. also gives 6-methylsalicylic acid and

Epoxydon (Ia): from [2-13C]AcONa (=) (Ib): from [1-BC]AcONa (•)

gentisyl alcohol which are biosynthesized from acetate and
malonate. ^{3,4} This hypothesis was confirmed by the present
structural assignment of the ¹³ C-labelled metabolites (Ia)

TABLE. ¹³C N.m.r. data for ¹³C-labelled epoxydon

	Shift do ^a	[2-13C]acetateb	[1-13C]acetatec
C-1	-68.1	-68.5	
C-2	-8.0	_	-6.9
C-3	-14.7	-14.8	
C-4	$63 \cdot 1$		$62 \cdot 8$
C-5	73.6	73.6	
C-6	74.5	_	74.5
C-7	69.3	$69 \cdot 2$	

^a Natural abundance; *ca.* 120 mg per 1·0 ml of MeOH with 1034 scans (3611 Hz) at 400 s/scan. ^b Epoxydon from sodium $[2^{-13}C]$ acetate; *ca.* 60 mg per 1·0 ml of MeOH with 56 scans (4000 Hz) at 100 s/scan. ^c Epoxydon from sodium $[1^{-13}C]$ acetate; ca. 40 mg per 1.0 ml of MeOH with 1208 scans (4000 Hz) at 40 s/scan.

Chemical shifts were measured relative to the ¹³C signal of methanol and converted to p.p.m. from benzene using the relationship δ_c (benzene) = δ_c (MeOH) + 79.0 p.p.m.

and (Ib) and by the fact that ¹⁴C-labelled gentisyl alcohol was incorporated into epoxydon with 25% efficiency by the mycelial mats from 14 day old cultures.⁵ The protondecoupled natural abundance ¹³C n.m.r. spectrum of epoxydon in MeOH is given in the Table. Peaks at δ 63.1 (p.p.m.) and 69.1 were ascribed to C-4 and C-7 respectively from a

continuous wave (CW) decoupled spectrum which gives a doublet for the former and triplet in the latter. Peaks at δ 73.6 and 74.5 were assigned to C-6 and C-5 respectively via off-resonance CW decoupling.⁶ Thus the ¹H spectrum of epoxydon shows 6-H (δ 3.45) separated further from the irradiating field than 5-H (δ 3.90). In the CW spectrum of epoxydon, the epoxy-carbon atoms C-6 and C-5 appear as doublets and the assignments are based on $J_r = 21 \text{ Hz}$ as observed for C-6 relative to $J_{
m r}=16~{
m Hz}$ for C-5 according to Ernst's equation.7

The ¹³C n.m.r. spectra (b and c in the Table) of the epoxydons (Ia) and (Ib) enriched in ¹³C (88 and 86%, respectively) biosynthesized from sodium [1-13C]- and

[2-13C]-acetate (400 mg) clearly demonstrated that C-1. C-3, C-5, and C-7 of epoxydon were derived from the methyl carbon of the acetate and C-2, C-4, and C-6 from the carboxy-carbon. The ¹H-¹³C satellite bands for 3-H in (Ia) $(J_{C-H} = 164 \text{ Hz})$ and 6-H in (Ib) $(J_{C-H} = 191 \text{ Hz})$ in the ¹H n.m.r. spectra (90 MHz) support this labelling pattern.

This labelling pattern confirms the polyketide origin of epoxydon and related compounds.5,8

We thank Dr. Kuniyoshi Huzieda (Hitachi Sesakusho Co. Ltd.) for the ¹³C n.m.r. measurements.

(Received, 30th July 1973; Com. 1107.)

- ¹S. Sakamura, H. Niki Y. Obata R. Sakai, and T. Matsumoto, Agric. Biol. Chem., 1969, 33, 698.
- ² A. Closse, R. Mauli, and H. P. Sigg, Helv. Chim. Acta, 1966, 49, 204.
- S. Sakamura, T. Chida, J. Ito, and R. Sakai, Agric. Biol. Chem., 1971, 35, 445.
 W. B. Turner, 'Fungal Metabolites,' Academic Press, New York, 1971, p. 86.
- ⁵ K. Nabeta, A. Ichihara, and S. Sakamura, submitted for publication.
- ⁶ M. Tanabe, T. Hamasaki, D. Thomas, and L. Johnson, J. Amer. Chem. Soc., 1971, 93, 273.
- ⁷ R. R. Ernst, J. Chem. Phys., 1966, 45, 3845.
- ⁸ S. Sakamura, K. Nabeta, S. Yamada, and A. Ichihara, Agric. Biol. Chem., 1971, 35, 1639.