$(C_{4}H_{5})_{4}P[UOCl_{5}]$: a New Type of Uranium(v_I) Oxochloro-complex

By KENNETH W. BAGNALL* and JAN G. H. DU PREEZ

(Chemistry Department, The University of Manchester, Manchester M13 9PL)

Summary The tetraphenylphosphonium salt, $Ph_4P[UO-Cl_5]$ has been obtained by reaction of SOCl₂ with either hydrated UO₂Cl₂ in the presence of Ph₄PCl or with $[Ph_4P]_2[UO_2Cl_4]$.

THE only known oxide chloride of U^{VI} is UO_2Cl_2 , from which the complex anion $[UO_2Cl_4]^{2-}$ is derived. A trioxo-species, $M_2^IUO_3Cl_2$, is also known, but neither $UOCl_4$ nor anions derived from it have been recorded, although the corresponding fluoride, UOF_4 , has recently been reported.¹

In the reductive chlorination of hydrated UO_2Cl_2 with $SOCl_2$ in the presence of aryl phosphonium (or arsonium) chloride, which ultimately yields salts of the UCl_6 -anion, the $SOCl_2$ solution slowly becomes dark red at room temperature and, when Ph₄PCl is present, deep brick-red crystals of Ph₄P[UOCl₅] separate slowly. Because of the low solubility of UO_2Cl_2 in $SOCl_2$, the compound is better prepared by allowing a concentrated solution of $[Ph_4P]_2[UO_2Cl_4]$ in $SOCl_2$ to stand at room temperature. A dark red solution is also formed initially when Ph₃PHCl, Ph₄ASCl, or Ph₃Ph-CH₂PCl are used instead of Ph₄PCl, but no solid product has yet been isolated. These red solutions become orange-

yellow on standing; the electronic spectrum shows an increasing concentration of U^V with time, but no U^{IV} . Analysis of the solids precipitated from the orange-yellow solutions by 2-methylbutane confirmed that only U^V was present. Reduction to U^V is much faster at room temperature in the presence of Et_4NCl , Et_2NH_2Cl , or Bun_4NCl , and in these three instances no intermediate red colouration developed.

 $Ph_4P[UOCl_5]$ was characterised by chemical analysis and it was shown by titration against $K_2Cr_2O_7$ in aqueous HCl that oxidation states lower than U^{VI} were absent. In the i.r. spectrum there is a strong feature at 838 cm⁻¹ and a weak one at 928 cm⁻¹ (cf. 940 cm⁻¹ in the i.r. spectrum² of UOF_4) neither of which appear in the i.r. spectrum of $[Ph_4P]_2[UO_2Cl_4]$; the very strong asymmetric O-U-O stretching mode, which appears at 903 cm⁻¹ in the spectrum of the latter, is absent in that of the former. In the corresponding green U^V compound,² $[Et_4N]_2[UOCl_5]$, the U-O stretching modes appear at 813 and 913 cm⁻¹, and it is reasonable to conclude that the 838 and 928 cm⁻¹ features in the spectrum of the U^{VI} analogue arise from U-O vibrations. The U-Cl stretching mode in the new compound appears as a strong feature at 290 cm⁻¹, with shoulders at 280 and 300 cm⁻¹, as compared with 253 cm⁻¹ (indications of shoulders at 245 and 265 cm⁻¹) in $[Ph_4P]_2$ - $[UO_2Cl_4]$ and² 253 cm⁻¹ (with side bands at 296 and 197 cm⁻¹) in $[Et_4N]_2[UOCl_5]$. The electronic spectrum of 0·1 M Ph_4P[UOCl_5] in CH_2Cl_2 is featureless between 600 and 2000 nm.

 $Ph_4P[UOCl_5]$ is hygroscopic and dissolves in water with immediate hydrolysis to UO_2^{2+} ; it is soluble in most polar

¹ P. W. Wilson, J.C.S., Chem. Comm., 1972, 1241.

² J. L. Ryan, J. Inorg. Nuclear Chem., 1971, 33, 153.

organic solvents and melts, with some decomposition, at 224° to a dark red liquid, in contrast to light yellow $[Ph_4P]_2$ -[UO₂Cl₄], which melts at 296—298° with charring.

We thank the S.R.C. and J.G.H. du P. the S.A. Atomic Energy Board, C.S.I.R., and the University of Port Elizabeth for financial support.

(Received, 7th September 1973; Com. 1257.)