Rhenium and Manganese Carbonyl Difluorosulphoximides

By R. Mews and O. Glemser*

(Anorganisch-Chemisches Institut der Universität Göttingen, 34 Göttingen, Germany)

Summary Silver difluorosulphoximide and rhenium pentacarbonyl bromide react to give Re(CO)₅NSOF₂; heating of the product to 90 °C yields the dimeric species [Re(CO)₄-NSOF₂]₂, with bridging NSOF₂-groups; with Mn(CO)₅Br, only the dimer was isolated. The first transition metal sulphur–nitrogen–fluorine compounds were recently prepared by the reaction of AgN- $(SO_2F)_2^1$ with transition metal halides.² In the same way AgNSOF₂³ introduces the difluorosulphoximide group [equation (1)]. Re(CO)₅NSOF₂ is a colourless solid,

$$\begin{split} \operatorname{Re}(\operatorname{CO})_5 \operatorname{Br} \, + \, \operatorname{AgNSOF}_2 & \xrightarrow[\operatorname{room \ temp.}]{\operatorname{CH}_2 \operatorname{Cl}_2} \\ & + \, \operatorname{AgBr} \, (80\%) \end{split} \tag{1}$$

m.p. 69—70°C, soluble in CH₂Cl₂, almost insoluble in non-polar organic solvents. As expected for C_{4v} symmetry three absorptions are found in the i.r. spectrum [A₁ 2159 (w), E 2049 (vs), A_1 1996 (s) cm⁻¹] and three in the Raman spectrum [A₁ 2160 (s), B_1 2085 (vs), A_1 1989 (s) cm⁻¹]. Bands due to the -NSOF₂ group are at 1461 (m) ($\nu_{\rm as\ NSO}$), 1212 (m) ($\nu_{\rm sym\ NSO}$), and 743 (s), 718 (s) ($\nu_{\rm as\ SF}$, $\nu_{\rm sym\ SF}$). The compound was further characterized by elemental analysis, mass spectroscopy [m/e 425/427 M^+ , 397/399 (M — CO)⁺], and ¹⁹F n.m.r. ($\delta_{\rm SF}$ —60·3 p.p.m.).

On heating to 90 °C in n-heptane, CO is evolved [equation (2)]. With Mn(CO)₅Br this decomposition already takes place

$$2\operatorname{Re}(CO)_{5}\operatorname{NSOF}_{2} \xrightarrow{90^{\circ}C} [\operatorname{Re}(CO)_{4}\operatorname{NSOF}_{2}]_{2} + 2\operatorname{CO}$$
 (2)

room temperature [equation (3)].

The dimeric nature of the tetracarbonyls was shown for the rhenium derivative by mass spectroscopy [m/e 794, 796, 798 M^+ ; 766, 768, 770 (M — CO)+; 738, 740, 742 (M — 2CO)+]. The compounds are sparingly soluble in organic solvents; thermal decomposition occurs above 130°C (Mn) and 150°C (Re). The i.r. spectra of the solids are rather

- ¹ J. K. Ruff, Inorg. Chem., 1965, 4, 1446.
- ² R. Mews and O. Glemser, Z. Naturforsch., in the press.
- $^3\,M.$ F. Feser and O. Glemser, to be published.

complex in the CO-stretching region, presumably due to site effects. {[Re(CO)_4NSOF_2]_2:2117 (m), 2026 (s), 1995 (vs), 1974 (sh), 1960 (vs) ν_{cO} ; 1395 (s), $\nu_{as\ NSO}$; 1205 (s), $\nu_{as\ NSO}$, 791 (s) cm⁻¹, ν_{SF} . [Mn(CO)_4NSOF_2]_2: 2112 (m),

2040 (s), 2008 (vs), 1987 (sh), 1976 (vs), $\nu_{eo};$ 1390 (s), $\nu_{ae~NSO},$ 1202 (s), $\nu_{aym~NSO},$ 772 (s) cm $^{-1},$ ν_{SF} }. Because no CO-absorptions are found below $1900~\text{cm}^{-1},$ the $NSOF_2$ group is thought to act as bridging species [(I) or (II)].

Comparing the geminal and the bridging NSOF₂ group, the largest shift is observed for ν_{ae} NSO (mainly associated with a S-O stretching mode). This would favour structure (II).

This work was supported by Deutsche Forschungsgemeinschaft and Stiftung Volkswagenwerk.

(Received, 20th July 1973; Com. 1047.)