Benzo[c]cinnoline N-Oxides as 1,3-Dipoles

By S. RICHARD CHALLAND, CHARLES W. REES,* and RICHARD C. STORR

(The Robert Robinson Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX)

Summary Benzocinnoline N-oxides give azomethine ylides with dimethyl acetylenedicarboxylate at elevated temperatures, most probably by 1,3-dipolar cycloaddition which is unprecedented for azoxy compounds, followed by electrocyclic ring opening; this mechanism is confirmed for the same reactions of the closely related Niminobenzocinnolinium ylides.

ALTHOUGH their potential 1,3-dipolar character has long been recognised¹ there have been no reported cycloaddition reactions of azoxy-compounds.

Several benzocinnoline N-oxides, conformationally rigid azoxy-compounds, have now been found to give 1:1 adducts with dimethyl acetylenedicarboxylate (DMAD) albeit in very low yield. Slow addition of 3 moles of DMAD to the benzocinnoline N-oxides (1; X=O; $R^1=R^2=H$; $R^1=OMe$, $R^2=H$; $R^1=R^2=OMe$) in nitrobenzene at 190°

over 3 h gave the adducts (2; X=0) in 2, 5, and 7% yield, respectively. 2,9-Dimethoxybenzocinnoline N-oxide gave an adduct in 8% yield. A considerable amount of unreacted N-oxide was recovered in each case (the yields based on N-oxide consumed being 15, 22, 38, and 51% respectively) but the reactions were not reversible. The above yields were not improved by variation of solvent, temperature, and reaction time.

The adducts were assigned the structures (2; X = O) on the basis of analytical data and spectral comparison with the adducts (2; $X = NCO_2Et$) formed from *N*-iminobenzocinnolinium ylides and DMAD.² Benz[*cd*]indazole *N*oxide and 4,4'-bis(dimethylamino)azoxybenzene did not react under the above conditions.

Formation of the ylides (2; X = 0) can be explained by 1,3-dipolar cycloaddition, unprecedented for azoxy-compounds, followed by electrocyclic ring opening, exactly as postulated for the analogous reaction of N-iminobenzocinnolinium ylides $(1; X = \text{NCO}_2\text{Et})$. That the latter involves such a mechanism is strongly supported by the regiospecific reaction of azimine $(1; X = \text{NCO}_2\text{Et}, \mathbb{R}^1 =$ OMe, $\mathbb{R}^2 = H$) with DMAD to give ylide $(2; X = \text{NCO}_2\text{Et}, \mathbb{R}^1 =$ OMe, $\mathbb{R}^2 = H$), as shown by a comparative analysis of the n.m.r. spectra of all the N-oxides, azimines, and the derived ylides.[†]

Scheme

This observation is important since it removes a doubt concerning the above rationalisation of the azimine cycloadditions. This is raised by the formation of ylides (e.g. 4) from phenanthridine N-oxides³ and related cyclic nitrones^{4,5} with acetylenic esters in what is formally an analogous reaction but which clearly cannot involve such a sequence.

The N-oxide reactions could involve rearrangement of an initial 1,3-dipolar cycloadduct (in the case of dihydroisoquinoline N-oxide such an adduct has been isolated and shown to rearrange to the corresponding ylide⁵) probably (cf. ref. 6) as shown in the Scheme. In the azimine cycloadditions, intervention of a diaziridine analogous to (3) would have led to non-regiospecific addition.[‡] An alternative possibility involves deoxygenation of the N-oxide by the acetylene to give an α -ketocarbene which then recom-

[†] The C(7) ¹³C n.m.r. absorptions of (1; $X = NCO_2Et$, $R^1 = OMe$, $R^2 = H$) and the corresponding N-oxide (1; X = O, $R^1 = OMe$, $R^2 = H$) correlate very closely with the lower field absorption of the C(4)-C(7) pair observed for the 3,8-dimethoxy-derivatives. Since the above azimine gives an azomethine imine which displays an absorption corresponding to the higher field one of the pair of the dimethoxy-azomethine imine, the side chain must now be attached to the other ring nitrogen, assuming only that the O, N, and C side chains exert parallel substituent effects. A similar pattern of shifts was observed for the ¹³C MeO absorptions in the above compounds and for the ¹⁴H MeO absorptions in the corresponding reactions with dicyanoacetylene. Full details of these spectral assignments will be given in the full paper.

 \ddagger (1; X = NCO₂Et, R¹ = H, R² = OMe) was only available in admixture with its 8-methoxy-isomer (1; X = NCO₂Et, R¹ = OMe, R² = H). However, this mixture gave a mixture of adducts (2: X = NCO₂Et, R¹ = H, R² = OMe) and (2; X = NCO₂Et, R¹ = OMe, R² = H) thus showing that the regiospecificity observed with the pure azimine was not the result of an over-riding substituent effect.

bines with the deoxygenated heterocycle, a mechanism which has received support in a recent communication.⁷ A corresponding mechanism for the azimine reaction, via an α -iminocarbene, would again lead to non-regiospecific addition, and also to the possibility of interception of the carbene by a more nucleophilic benzocinnoline. However when (1; $X = NCO_2Et$, $R^1 = R^2 = H$) was allowed to react with DMAD in the presence of an excess of 3,8-dimethoxybenzocinnoline no "cross-over" was observed; only ylide (2; $X = NCO_2Et$, $R^1 = R^2 = H$) was formed and no ylide (2; $X = NCO_2Et$, $R^1 = R^2 = OMe$) could be detected.

Significantly 1,5-dipolar electrocyclic ring opening of an initial cycloadduct is possible for azimines and azoxy compounds but not for nitrones.

(Received, 20th September 1973; Com. 1318.)

- ¹ R. Huisgen, Angew. Chem. Internat. Edn., 1963, 2, 565.
 ² S. F. Gait, M. J. Rance, C. W. Rees, and R. C. Storr, J.C.S. Chem. Comm., 1972, 688.
 ³ R. M. Acheson, A. S. Bailey, and I. A. Selby, J. Chem. Soc. (C), 1967, 2066, and references therein; R. Huisgen, H. Seidl, and W. 167, 2020, 102, 2020. J. Wulff, Chem. Ber., 1969, 102, 915.

 - ⁶ S. Takahashi and H. Kano, J. Org. Chem., 1965, 30, 1118.
 ⁵ H. Seidl, R. Huisgen, and R. Knorr, Chem. Ber., 1969, 102, 904.
 ⁶ J. E. Baldwin, R. G. Pudussery, A. K. Qureshi, and B. Sklarz, J. Amer. Chem. Soc., 1968, 90, 5325.
 ⁷ R. A. Abramovitch and I. Shinkai, J.C.S. Chem. Comm., 1973, 569.