Photolysis of 2,6-Di-t-butyl-1,4-benzoquinone: a New Rearrangement

By Trevor J. King
(Department of Chemistry, The University, Nottingham NG7 2RD)

and Alexander R. Forrester, Munro M. Ogilvy, and Ronald H. Thomson*
(Department of Chemistry, University of Aberdeen, Old Aberdeen AB9 2UE, Scotland)

Summary U.v. irradiation of 2,6-di-t-butyl-1,4-benzoquinone in benzene gives a fused dioxocyclopentanocyclopentene.

Photolysis of t-butyl-1,4-benzoquinones produces a number of products, the most interesting containing a rearranged side chain as in (1) ${ }^{\mathbf{1}}$ (formed in alcoholic solvents)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
and (2) ${ }^{1}$ (in carboxylic acid solutions). The first step is regarded ${ }^{1,2}$ as an intramolecular hydrogen abstraction to
give (3) leading to the spiro-intermediate (4) from which (1) and (2), and other solvent-derived products ${ }^{3}$ arise.

The photoreaction of 2,6 -di-t-butylbenzoquinone (5) in benzene ${ }^{4}$ in visible light is extremely slow but we now find that irradiation with u.v. light \dagger gives a mixture of products including an isomeric diketone (1%), m.p. $90-91^{\circ}, \lambda_{\max }$ $266 \mathrm{~nm}, \nu_{\text {co }} 1735$ and $1710 \mathrm{~cm}^{-1}, \delta 1.03\left(\mathrm{Bu}^{\mathrm{t}}\right), 1 \cdot 31(\mathrm{Me})$, $1.61(\mathrm{Me}), 6.19(=\mathrm{CHCO})$, and 1 H doublets ($J c a .18 \mathrm{~Hz}$) at $2.32,2.37,2.77$, and 2.97 . Initially the mass spectrum suggested a dimeric compound and as these data were irreconcilable the problem was solved by X-ray crystallography which established the bicyclic structure (6).

The crystals are monoclinic, space group $C 2 / c$ with $a=24.003(1), b=7 \cdot 464(1), c=15 \cdot 507(1) \AA, \alpha=90, \beta=$ $110.59(1), \gamma=90^{\circ}$, and $Z=4$. The intensities of 1943 observed reflections were measured on a Hilger-Watt fourcircle diffractometer using $\mathrm{Cu}-K_{\alpha}$ radiation out to a θ angle of 76°. The structure was solved by direct methods using MULTAN. Refinement was by block-diagonal leastsquares with anisotropic temperature factors, and the hydrogen atoms were located from a difference map. The final R-value with the hydrogens included in the computation was $6 \cdot 4 \%$. All bond lengths and angles are close to the expected values for (6).

In the mass spectrum of (6) the molecular ion peak is minute and the main fragmentation derives from the $M+1$ ion at $m / e 221$ (4\%) (8) to give $m / e 164$ (100%) ($M+1$ $-\mathrm{Bu}^{\mathrm{t}}$), followed by loss of $\mathrm{Me} \cdot$ and CO .
Formation of (6) can be attributed to intramolecular coupling of (3) to give the strained cyclobutane (7) which rearranges as indicated, i.e. (5) \rightarrow (3) $\rightarrow(7) \rightarrow(6)$.

Another minor product (0.5%) identified in the reaction mixture is the phenol (9) which may be formed by the addition of benzene to an excited carbonyl group followed by deoxygenation.
(Received, 14th September 1973; Com. 1282.)
\dagger Hanovia 500 S mercury vapour lamp, 6 h at 20° under $\mathrm{N}_{\mathbf{2}}$.
${ }^{1}$ C. M. Orlando, H. Mark, A. K. Bose, and M. S. Manhas, J. Amer. Chem. Soc., 1967, 89, 6527.
${ }^{2}$ S. Farid, Chem. Comm., 1971, 73.
${ }^{3}$ S. Farid, Chem. Comm., 1970, 303.
${ }_{5}^{4}$ J. M. Bruce and A. Chaudhry, J.C.S. Perkin I, 1972, 372.
${ }^{5}$ P. Main, M. M. Wolfson, and G. Germain, 'Multan, A Computer Program for the Automatic Solution of Crystal Structures,' University of York, 1971.

