Square Pyramidal Phosphorus. X-Ray Analysis of the 1,3,2-Dioxaphospholans from Hexafluoroacetone and Phosphetans

By Jacqueline A. Howard, David R. Russell,* and Stuart Trippett
(Department of Chemistry, The University, Leicester LE1 7RH)

Summary X-Ray crystal structure determinations of two 1,3,2-dioxaphospholans formed from hexafluoroacetone and l-p-bromophenylphosphetans reveal square pyraamidal geometry about phosphorus.

We have previously reported ${ }^{1}$ on the variable temperature ${ }^{19} \mathrm{~F}$ n.m.r. of the $1,3,2$-dioxaphospholans ($\mathbf{1} ; \mathrm{R}^{1}=\mathrm{H}$ and Me), formed from hexafluoroacetone and a series of 1 -substituted phosphetans, and explained the results in terms of Berry pseudorotation (BPR) processes and the varying apicophilicities of the substituents R^{2}. In view of the continuing uncertainty over the precise details of ligand reorganisation processes in phosphoranes ${ }^{2}$ we thought it prudent to look more closely at the geometry of these adducts and now report on the X-ray structure analyses of the 1,3,2-dioxaphospholans (1a) and (1b).

a; $R^{\prime}=H ; R^{2}=p-B r \cdot C_{6} H_{4}$
b; $R^{\prime}=c i s-M e ; R^{2}=p-\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$

(2)

(3)

Crystal data: (1a) $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrF}_{12} \mathrm{O}_{2} \mathrm{P}, \quad M=617 \cdot 2$, monoclinic, $a=9.95, b=17.06, c=15.36 A, \beta=119.2^{\circ}, U=$ $2275 \AA^{3}, Z=4, D_{\mathrm{c}}=1 \cdot 80$, space group $P 2_{1} / c$. (1b) $C_{20^{-}}$ $\mathrm{H}_{20} \mathrm{BrF}_{12} \mathrm{O}_{2} \mathrm{P}, \quad M=631 \cdot 3$, orthorhombic, $a=30 \cdot 16, b=$ $31 \cdot 31, c=10.23 \AA, U=9660 \AA^{3}, Z=16, D_{\mathrm{c}}=1.74$, space group $A b a 2$ from the structure analysis.

Reflections with $I>3 \sigma I$ were used in the analysis from data collected using Mo- K_{α} radiation and graphite monochromator on an automated Stoe diffractometer. The final R-values are 0.091 (1122 reflections) for (1a) and 0.079 (1358 reflections) for ($\mathbf{1 b}$), using anisotropic temperature factors for the phosphorus, fluorine, and bromine atoms.

The molecular geometry of (1a) is displayed in the Figure. Crystals of ($\mathbf{1} \mathbf{b}$) contain two independent molecules having slight conformational differences, but the environment about phosphorus in both molecules is the same as found in

Figure. Molecular geometry of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right)\left(\mathrm{C}_{3} \mathrm{~F}_{6} \mathrm{O}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{14}\right)$. CF_{3} groups and the Br atom have been omitted. Bond lengths $(\AA)^{3}$ have e.s.d.s $\pm 0.02 \AA$ for $\mathrm{P}-\mathrm{O}$ and $\mathrm{P}-\mathrm{C}$, and $\pm 0.03 \AA$ for other bonds shown.
(1a). Bond angles about phosphorus for the three molecules are given in the Table. In contrast to all previously recorded structures for five-co-ordinate phosphorus, (1a) and (1b) are essentially square-pyramidal. \dagger This is

Table. Bond angles and e.s.d.s $\left({ }^{\circ}\right)$ about the phosphorus atom in the two phospholans (1a) and (1b)

Angle	$(\mathbf{1 a})$	$(\mathbf{1 b})$	
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(7)$	$105 \cdot 6(8)$	$105 \cdot 7(1 \cdot 1)$	$104 \cdot 4(1 \cdot 0)$
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(9)$	$110 \cdot 7(7)$	$112 \cdot 6(1 \cdot 2)$	$110 \cdot 0(1 \cdot 0)$
$\mathrm{C}(1)-\mathrm{P}-\mathrm{O}(1)$	$101 \cdot 6(6)$	$100 \cdot 6(9)$	$100 \cdot 5(9)$
$\mathrm{C}(1)-\mathrm{P}-\mathrm{O}(2)$	$100 \cdot 0(6)$	$99 \cdot 6(8)$	$99 \cdot 4(7)$
$\mathrm{C}(7)-\mathrm{P}-\mathrm{C}(9)$	$78 \cdot 1(9)$	$75 \cdot 9(1 \cdot 4)$	$80 \cdot 7(1 \cdot 3)$
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	$85 \cdot 0(6)$	$86 \cdot 2(9)$	$86 \cdot 1(8)$
$\mathrm{C}(7)-\mathrm{P}-\mathrm{O}(1)$	$92 \cdot 7(8)$	$92 \cdot 3(1 \cdot 2)$	$92 \cdot 3(1 \cdot 1)$
$\mathrm{C}(9)-\mathrm{P}-\mathrm{O}(2)$	$90 \cdot 3(8)$	$91 \cdot 5(1 \cdot 1$	$88 \cdot 7(1 \cdot 0)$
$\mathrm{C}(7)-\mathrm{P}-\mathrm{O}(2)$	$154 \cdot 2(7)$	$154 \cdot 5(1 \cdot 2)$	$156 \cdot 1(1 \cdot 0)$
$\mathrm{C}(9)-\mathrm{P}-\mathrm{O}(1)$	$147 \cdot 7(8)$	$146 \cdot 6(1 \cdot 2)$	$149 \cdot 5(1 \cdot 0)$

particularly apparent from angles $\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(9)$ and $\mathrm{O}(2)-$ $\mathrm{P}-\mathrm{C}(7)$, which would be 120° and 180° respectively in a trigonal bipyramidal molecule, and from the similarity of the four angles from the apical p-bromophenyl carbon to the other atoms. The range observed ($99-113^{\circ}$) for these

[^0] Chem. Comm., 1973, 144.
angles spans the value of $104 \cdot 1^{\circ}$ calculated from an electrostatic model of five-co-ordination which minimises the repulsion between five charges on a sphere constrained to $C_{4 v}$ symmetry. ${ }^{3}$ The highest symmetry possible for (1a) and ($\mathbf{1 b}$), C_{s}, is only approximately attained judging from the angles in the Table. The departure of the overall geometry of ($\mathbf{1 a}$) and ($\mathbf{1} \mathbf{b}$) from that of a trigonal bipyramid towards a square pyramid is perhaps even more marked than is found for pentaphenylantimony, ${ }^{4}$ which hitherto is the only example of square pyramidal geometry for a Group VA element. Comparable bond lengths within the three independent molecules do not differ significantly, and fall within the ranges observed in related molecules, although the $\mathrm{P}-\mathrm{C}(7)$ and $\mathrm{P}-\mathrm{C}(9)$ distances are unusually long.

In contrast to (1a) and (1b), both of the spirophosphoranes (2; $\mathrm{R}=\mathrm{SPh}$) and (2; $\left.\mathrm{R}=p-\mathrm{O} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Br}\right)$ derived from hexafluoroacetone have trigonal bipyramidal geometry ${ }^{5}$ and the 1,2 -oxaphosphetan (3) is essentially trigonal bipyra-
midal. ${ }^{6}$ Apparently the particular combination of both a four- and a five-membered ring is necessary before square pyramidal geometry becomes the more stable.

These results do not affect our interpretation of the variable temperature ${ }^{19} \mathrm{~F}$ n.m.r. spectra of the phosphetanhexafluoroacetone adducts. ${ }^{1}$ The square pyramidal conformation adopted corresponds to the transition state which would normally be assumed for BPR between topomeric trigonal bipyramids having the four-membered ring apical-equatorial. Presumably in this particular system the square pyramidal conformation is of slightly lower energy than the related trigonal bipyramids. The high barrier to equivalence of all the CF_{3} groups must still involve traversing a trigonal bipyramid having the four-membered ring diequatorial.

We thank the S.R.C. for financial support.
(Received, 18th September 1973; Com. 1306.$)$
${ }^{1}$ R. K. Oram and S. Trippett, J.C.S. Perkin I, 1973, 1300; A. E. Duff, R. K. Oram, and S. Trippett, Chem. Comm., 1971 , 1011.
${ }^{2}$ P. Gillespie, F. Ramirez, I. Ugi, and D. Marquarding, Angew. Chem. Internat. Edn., 1973, 12, 91.
${ }^{3}$ J. Zemann, Z. anorg. Chem., 1963, 324, 241.
${ }^{4}$ P. J. Wheatley, J. Chem. Soc., 1964, 3718; A. L. Beauchamp, M. J. Bennett, and F. A. Cotton, J. Amer. Chem. Soc., 1968, 90, 6675.
${ }^{5}$ J. A. Howard and D. R. Russell, unpublished results.
${ }^{6}$ Mazhar-Ul-Haque, C. N. Caughlan, F. Ramirez, J. F. Pilot, and C. P. Smith, J. Amer. Chem. Soc., 1971, 93, 5229.

[^0]: \dagger Distortion towards square pyramidal geometry has been reported, e.g. M. Eisenhut, R. Schmutzler, and W. S. Sheldrick, J.C.S.

