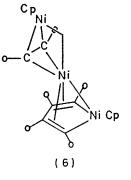

Reaction of Hexafluorobut-2-yne with Nickelocene and the Crystal Structure of $[C_{5}H_{5}NiCF_{3}CCCF_{3}]_{4}$


By JOHN L. DAVIDSON, RAJNA HERAK, LJUBICA MANOJLOVIC-MUIR, KENNETH W. MUIR, and D. W. A. SHARP* (Department of Chemistry, University of Glasgow, Glasgow G12 8QQ)

Summary Reaction of CF_3CCCF_3 with $(\pi-C_5H_5)_2Ni$ gives $C_6(CF_3)_6$, $C_5H_5Ni[C_5H_6(CF_3CCCF_3)_2]$, $[C_5H_5NiCF_3CCCF_3]_4$, and $C_5H_5)_2Ni_3(CF_3CCCF_3)_3$ in addition to known products; the molecular structure of $[C_5H_5NiCF_3CCCF_3]_4$ has been determined by X-ray analysis.

HEXAFLUOROBUT-2-VNE has been previously reported^{1,2} to react with nickelocene at room temperature to give $(CpNi)_2$ - CF_3CCCF_3 (1) and $CpNi[C_5H_5 \cdot CF_3CCCF_3]$ (2) (Cp = cyclopentadienyl). We now report that at 358 K the range of products is extended to include hexakis(trifluoromethyl)benzene (3), $CpNi[C_5H_5(CF_3CCCF_3)_2]$ (4), and $[C_5H_5NiCF_3 CCCF_3]_4$ (5). Complex (1) reacts with CF_3CCCF_3 at 363 K to give (4) and (5) together with some $(C_5H_5)_2Ni_3(CF_3CCCF_3)_3$ (6). Complex (2) reacts with CF_3CCCF_3 to give a low yield of (4). All the complexes have been fully characterised analytically and spectroscopically.

Complex (4) is formulated as an adduct of $CF_3 \equiv CCF_3$ to the free olefinic bond of (2) and although several structural isomers are possible only one appears to be formed. The presence of h^1 , h^2 , h^3 , h^4 , and h^5 carbon donor units in (5) has been shown by X-ray analysis. Each of the four nickel atoms is chemically unique, although all attain noble gas electronic configurations by formation of one Ni-Ni and seven Ni–C bonds. The attachment of a $[(\pi-C_5H_5)Ni]_2$ unit to a cyclohexene ring by one π -olefin and two σ bonds is novel, as is the 1,2 addition of a NiC₄ unit to a cyclopenta-

dienyl system which then becomes a π -cyclopentenyl group. (A similar arrangement has been postulated for the product of the reaction between Cp₂Ni and octafluorocyclohexa-1,3diene.)² There also appears to be no previous structure determination of a (π -nickelacyclopentadienyl)nickel system, although related complexes of iron, rhodium, and osmium have been described.³ From spectroscopic evidence and by analogy with (5), (6) is formulated as shown being similar to (CpNi)₂CF₃CCCF₃ with a nickelacyclopentadienyl ring in place of one cyclopentadienyl group.

The full mechanism of formation of these species is not clear but is consistent with reaction of (1) and CF₃C:CCF₃ to give an intermediate Cp₂Ni₂(CF₃CCCF₃)₂ which can dimerise to (5) and thus allow each nickel atom to attain a noble gas electronic configuration. The reaction of CF₃C:CCF₃ with nickelacyclopentadienyl rings provides a ready route to hexakis(trifluoromethyl)benzene.

Crystal data: $[C_9H_5F_6Ni]_4$, $M = 1143\cdot3$; triclinic, $a = 9\cdot322$, $b = 16\cdot520$, $c = 12\cdot727$ Å, $\alpha = 103\cdot76^\circ$, $\beta = 97\cdot83^\circ$, $\gamma = 85\cdot89^\circ$, $U = 1884\cdot4$ Å³, space group $P\overline{1}$, $D_c = 2\cdot014$ for Z = 2. The intensities of 3526 independent reflection were measured on a four-circle diffractometer. All atoms except hydrogens were located by Patterson and Fourier methods. R = 0.09 currently after block-diagonal least-squares refinement of the positional and anisotropic thermal

parameters of all atoms. The molecular geometry leads unambiguously to the formulation (5). Noteworthy features of the structure include the non-equivalence of the Ni–Ni bond lengths [see (5)] and of the Ni–C σ -bond lengths; the mean lengths of the Ni-C(nickelacyclopentadienyl) and

Ni-C(cyclohexene) σ -bonds ar 1.91 (1) and 2.01 (1) Å respectively. All other bond lengths are normal.

R. H. thanks the Science Research Council of Serbia, Yugoslavia for a grant.

(Received, 31st August 1973; Com. 1236.)

¹ J. L. Boston, D. W. A. Sharp, and G. Wilkinson, J. Chem. Soc., 1962, 3488; D. W. McBride, E. Dudek, and F. G. A. Stone, ibid, 1964, 1752.

² R. L. Hunt and G. Wilkinson, *Inorg. Chem.*, 1965, 4, 1270.
³ E. F. Epstein and L. F. Dahl, *J. Amer. Chem. Soc.*, 1970, 92, 502 and references therein.